
122
05-01-2014

GRAND SYSTEMS
DEVELOPMENT TRAINING
PROGRAM PRESENTATION

VERSION 14.0

The union of sound system engineering,
domain engineering, functional management,

and program management
for the greater good of the enterprise

and customer base.

VOLUME 122
THE MODEL, THE TEXTUAL AND

GRAPHICAL RAS, AND THE
SPECIFICATION – A LOGICAL AND

EFFECTIVE PROGRESSION

Manual written by and presentation offered by
Jeffrey O. Grady

Owner JOG System Engineering
6015 Charae Street

San Diego, California 92122
(858) 458-0121
jeff@jogse.com

http://www.jogse.com

© Copyright 2014

No part of this manual may be scanned or reproduced in
any form without permission in writing from the author.

122
05-01-2014

 i

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE
------------------ -- --------
1. Introduction 1
2. Modeling overview 3
2.1 Functional Modeling 3
2.2 Solution Space Modeling 5
2.2.1 Product Entity 5
2.2.2 Interface 6
2.2.3 Specialty Engineering 7
2.2.4 Environmental Requirements 8
2.2.5 Physical Process Model 11
3. Modeling Artifact Identification 11
4. Specification Templates 13
5. Requirements Analysis Sheet (RAS) 14
6. The RAS in Graphical Form 15
6.1 The Function Allocation Plane 15
6.2 Interface and Environmental Coverage 16
6.2.1 The Interface Plane 16
6.2.2 Orientation of the Product Entity Internal Interface Plane 19
6.2.3 Extension of the Internal Interface Plane to Cover the Environment 20
6.3 Specialty Engineering Plane 22
6.4 Compete Graphical RAS 22
7. Disciplined Interface Identification Algorithm 23
8. Verification Requirements 25
9. Summary, Prescription, and Closing 25

A APPENDIX A, Presentation A-i

 ii

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
------------------ -- --------
1 Modeling Fundamentals 2
2 A Pyramidal View of Functional Analysis and Allocation 4
3 Sample Functional Flow Diagram 5
4 Typical Product Entity Block Diagram 6
5 Top Level System Schematic Block Diagram 6
6 Interface Reporting Models 7
7 Specialty Engineering Scoping Matrix 8
8 Environmental Classes 9
9 Environmental Relationships 10
10 Process Flow Diagram 12
11 Example of RAS Content 15
12 Performance Requirements Plane 16
13 Progressive Interface Decomposition 17
14 Rotated Internal Interface Plane 19
15 Internal Interface Plane Orientation 20
16 Extended Interface Plane 21
17 Specialty Engineering Plane 22
18 Complete Graphical RAS Structure 23
19 The Resultant Progression 26

LIST OF TABLES

TABLE TITLE PAGE
------------------ -- --------
1 JOGSE Universal Modeling ID List Sample 13
2 RAS Record Structure 15

 iii

ACRONYMS

ACRONYM MEANING PAGE
------------------ -- --------
DFD Data Flow Diagram 25
DoDAF Department of Defense Architecture Framework 1
FID Function Identification 15
IDEF Identification Definition 4
INCOSE International Council On Systems Engineering 18
IRFNA Inhibited Red Fuming Nitric Acid 9
MID Modeling Identification 9
MoDAF Ministry of Defence Architecture Framework 1
MSA Modern Structured Analysis 1
MTBF Mean Time Between Failures 7
PID Product Identification 13
PSARE Process for System Architecture and Requirements Engineering 1
RAS Requirements Analysis Sheet 1
RID Requirement Identification 13
SysML System Modeling Language 1
UADF Universal Architecture Description Framework 1
UML Unified Modeling Language 1
UPDM Unified Process for DoDAF MoDAF 1

 iv

 1

The Model, the Textual and Graphical RAS, and the
Specification, A Logical and Effective Progression

Jeffrey O. Grady

Owner JOG System Engineering
6015 Charae Street

San Diego, CA 92122
(858) 458-0121 jeff@jogse.com

1. Introduction

A system is a collection of product entities interrelated with each other and a prescribed
environment through interface entities that collectively achieve a specific function. In the context
of this paper these systems are developed by a program operated by a system development
enterprise in accordance with a contract with a procuring customer. There are other possibilities
but this is the context intended in this paper. A system and its subordinate entities are said to
accomplish a well-defined functionality that should be fully explored and the requirements
defining essential characteristics of the system captured in specifications for each entity in the
system at some levels of indenture.

There are several ways that a development enterprise can determine an appropriate architecture
and derive the content of the specifications it must prepare but this paper encourages that the
architecture and all requirements for all entities be derived through one of three or four universal
architecture description frameworks (UADF) each of which provides a comprehensive modeling
capability that can be applied to all entities no matter how those entities are to be implemented in
terms of hardware, software, or humans doing things. Three of these UADF are: (1) functional,
(2) the combination of modern structured analysis (MSA) and process for system architecture
and requirements engineering (PSARE), and (3) the combination of unified modeling language
(UML) and system modeling language (SysML). It may be possible to form a fourth using
unified process for DoDAF MoDAF (UPDM) but this paper does not pursue that alternative.
Refer to the author’s paper “Universal Architecture Description Framework” in Systems
Engineering The Journal of The International Council On Systems Engineering, Volume 12
Number 2, Summer 2009 for details on UADF.

Figure 1 illustrates the way that effective models aid the development of a system concept and
related requirements for inclusion in program specifications. The analyst stares at the problem
space starting with the customer need, analyzes the problem space making sketches in a
particular modeling approach that capture system functionality or behavior, the analyst derives
performance requirements from the modeling artifacts, and allocates those requirements to
entities in the evolving system product structure inserting new ones where nothing existing is
adequate. The modeling is accomplished by the analyst manipulating images created with paper
and pencil or computer screen and keyboard using hand-eye coordination in accordance with his
or her mental activity associated with the modeling artifacts. Out of this effort comes a model of
the system of increasingly expansive depth and breadth that tends to be complete and offer no
unnecessary content. This can be a dynamic activity with lower tier modeling revealing better
alternatives than selected in higher tier decisions previously arrived at.

 2

The models available all employ a set of simple modeling artifacts that are intended to represent
needed functionality, behavior, or physical attributes. Over time the problem space is translated
into a series of simple sketches on the facets shown on Figure 1 that can be understood by those
familiar with the model employed resulting in the disappearance of the problem space that can
now be communicated effectively in the form of the sketches on these facets.

Figure 1 Modeling Fundamentals

In the preparation of a specification we should not only follow a well-described modeling
approach, but leave behind a clear traceability record from the modeling through to the content
of the specifications that is part of the formal configuration record. In the author’s recollection he
has never observed this to have been comprehensively done in the development of a system on a
program. The rationale for following this pattern of behavior is that it is seldom that a system
development process follows a uniformly perfect development process to a perfect result. When
conflicts are identified it is helpful to possess a clear record of the path traveled such that errors
in the path followed can be identified, corrected quickly, and adjustments made to restore
program health. Also, respecting a formal traceability pattern of behavior encourages well-
developed verification requirements that lead to effective and complete verification tasks the
completion of which tends to provide good evidence of design compliance with the content of
the specifications or early identification of problems that should be corrected.

Given that we accept that all requirements appearing in specifications be derived through
modeling, it means that we must have a way to establish traceability between requirements and
the modeling artifacts from which they were derived. This has seldom if ever been done well on
a program. As noted above there are several effective modeling approaches, one of which our
organization should excel in applying, and we should possess a traceability capability no matter
which one we choose to apply. The author is certain that a pattern can be devised for the use of
MSA-PSARE or UML-SysML but he has not published one to date. This paper describes the
application of the encouraged pattern of behavior using the functional UADF. While it is true
that software modeling was accomplished using this model in early software development work

 3

there are probably few enterprises that would select this UADF today because of an inability to
gain software engineering acceptance. While MSA and UML were developed focused on the
narrow needs of software development PSARE (or Hatley Pirbhai or HP as it was earlier known)
and SysML were intended as system development models so either the MSA-PSARE or UML-
SysML model can be used comprehensively by any enterprise with less disruption of a hardware
dominated system engineering community, that may still be applying the functional model, than
might be imagined.

This paper will cover some old ground with which the reader may be familiar but there are two
new aspects of the presentation. One is the graphical construct used to communicate the
relationships between the several elements of the modeling and requirements capture process.
The author has used the basic elements of this construct before but even in his new book on
requirements analysis to be published in 2013 by Elsevier he did not include one feature of it that
woke him up in the dead of night to be captured when it was too late to submit it to the publisher.
The weak element of the structure used in the book was the capture of environmental
requirements and that is corrected in this paper by recognizing environmental entities as akin to
product entities and the linkage between them in exactly the same fashion as interfaces with the
product entities. The second is an explanation of how the human mind can apply a disciplined
interface identification methodology evaluating all possible pairs of trios of modeling entities as
a replacement for the intuitive method used by most experienced system engineers.

2. Modeling Overview

As noted above we will appeal to the functional model in this paper that consists of the
functional flow diagram for gaining insight into needed performance requirements that when
allocated to product entities begin the formation of the physical product entity structure for the
system. There are three other models required, however, to complete the story. We need a means
to identify and define all interface relationships between the entities. We also need a set of
models to deal with the specialty engineering requirements appropriate for the system and its
entities. Finally, we need a model for the system environment. The latter is one of the primary
new elements of this paper. The paper will recognize environmental entities in a similar fashion
to product entities that drive internal interfaces.

2.1 Functional Modeling

Figure 2 offers a view of system development popularized by Brian Mar and Bernard Morais in
their writing and lectures. The functional model begins with a requirement often referred to as
the system need that is derived from the ultimate function of a system represented by the peak of
the functional pyramid in Figure 2 and it is allocated instantly to the system represented by the
peak of the physical pyramid in Figure 2, the system. We continue to analyze functionality in
layers of functional flow diagrams deriving requirements that are allocated to hierarchically
expressed layers in the physical model. In the end, we have the physical product structure of the
system (system entity model) defined as well as the performance requirements for those product
and interface entities. Ideally, design concepts for product entities derived from functional
modeling would be developed close behind the functional modeling with an intense interaction
between the persons doing the modeling and those doing the concept development with system
engineers and modeling and simulation people applying integration and optimization to the
evolving picture. Proceeding in isolation in each pyramid is a process error.

 4

Figure 2 A Pyramidal View of Functional Analysis and Allocation

The principal modeling artifact employed in functional analysis is the functional flow diagram
depicting blocks each one of which represents functionality that the system must be able to
satisfy. These blocks are strung together in sequences by directed line segments that tell the order
in which the functions have to be completed, some perhaps in parallel and others in a serial
fashion. The analyst derives performance requirements from the functions that define what the
system must be capable of doing and how well. These requirements are allocated to a product
entity and the requirements captured in the specification for that entity.

Figure 3 shows an example of a functional flow diagram motivated by the General Dynamics
Atlas Space Transport System. The upper stage referred to in this figure is essentially the same
as the product entity depicted in Figure 4. Incidentally, the flow diagram provided in Figure 3 is
not that different from the one appropriate for the complete Titan 4 Space Transport System only
a part of which is shown in Figure 4.

There exist alternatives to the flow diagram including two axis sketches that also include
supporting resource or data flow in the form of behavioral diagrams and enhanced functional
flow block diagrams. IDEF-0 adds the flow of supporting resources and controlling influences to
the flow diagram. Some analysts use a hierarchical functional diagram. When flow charts were
employed in early software development diagramming they were drawn as vertical flow charts
where the blocks represented needed computer software functionality from which requirements
for computer code were derived. The activity diagram of UML and SysML is essentially a
functional flow diagram.

Some analysts claim that the more complex models expose the analyst to a more complete
context of the problem space and this may be true but they also can hide content from analyst’s
appreciation because of the added complexity. Some analysts also prefer no more than some
fixed number of blocks on any diagram with possibly more separate diagrams while others insist
on fewer more comprehensive diagrams. There are advantages and disadvantages each way.
Generally simple is good but the author tends to include too much content on each sheet.

 5

Figure 3 Sample Functional Flow Diagram

2.2 Solution Space Models

The functional modeling is only intended to give us insight into performance requirements that
tell what the system must do and how well it must do it. There are three other kinds of
requirements we wish to capture in our specifications: (1) interfaces between product entities and
their needed characteristics, (2) specialty engineering requirements, and (3) environmental
requirements. The latter can be thought of as a special kind of interface requirement. The
functional UADF includes models for all of these plus one to capture the intended physical
structure of the system in the form of a product entity block diagram and another to define the
physical process that the system will be employed in.

2.2.1 Product Entity

The product entity model is just a hierarchical block diagram beginning with a single block at the
top for the system. Each level in the diagram has a block for each product entity at that level.
Figure 4 shows a typical product entity diagram that happens to be for the Martin Marietta Titan
4 Space Transport Rocket System emphasizing the Centaur Upper Stage that at the time was
built by General Dynamics Space Systems Division where the author was working at the time.
At the time the author drew the original sketch for Figure 4 he believed that the modeling
diagrams should be engineering drawings formally released but he has since concluded that they
should either be captured in a special computer modeling application or published in appendices
of a system architecture report. The content of the document in any case should be placed under
configuration control possibly as an engineering drawing. The motive for the author changing his
mind on this matter was that the complete model work product should be kept together.

 6

Figure 4 Typical Product Entity Block Diagram

2.2.2 Interface

The top end of the interface schematic block diagram model is illustrated in Figure 5. The I1
interfaces are internal to the system. Interfaces I2 are between environmental entities (modeling
class Q of all kinds) and product entities (modeling class A). The I3 interfaces are between
environmental entities on both terminals. Many system engineers would caution against
recognizing any of the latter but the author claims that there are inter-environmental stresses that
can be of value in the development of a system.

Figure 5 Top Level System Schematic Block Diagram

The functional UADF employs either a schematic block diagram or an n-square diagram to
identify interfaces for which interface requirements are defined. In the schematic block diagram,
shown in Figure 6a, product entities of interest are depicted by blocks from the product entity
block diagram that are connected at the lower tiers by directed line segments to indicate a need
for an interface. An n-square depiction of the interface is identical as is the one in Figure 6b

 7

relative to its schematic block diagram cousin where the product entities are marked on the
diagonal. One should mark the intended directionality of the n-square diagram as the arrow in
Figure 6b is intended to do. The reader can see from the n-square depiction that there should be
an interface from A3 to A5 by the X marked in the appropriate intersection and confirm that this
is also shown in the schematic block diagram. The problem with the diagrams noted in Figure 6
is that they do not help us to identify a need for an interface between two environmental entities
or between a product entity and an environmental entity. These diagrams only provide an
organized means for reporting interfaces. More on this a little later in this paper.

Figure 6 Interface Reporting Models

2.2.3 Specialty Engineering

There are many different specialty engineering domains such as reliability, maintainability, mass
properties, and safety. Each of t hese domains has a particular modeling approach employed to
derive requirements in their domain. For example, the reliability engineer creates a probabilistic
reliability math model using either item failure rates, mean time between failure (MTBF) figures,
or reliability percentages. The mass properties domain engineers use a weights statement. Figure
7 shows how the system engineer can encourage participation by the specialty engineering
community using a specialty engineering scoping matrix to identify all of the product entities
each discipline must craft requirements for. The author uses the lead letter H for specialty
domain modeling IDs. The specialty engineer applies his or her model as directed by the
specialty engineering scoping matrix to the product entities and derives appropriate requirements
for inclusion in that specification. The resultant requirements are captured in the requirements
analysis sheet implemented in a table, spreadsheet, or computer database. Each discipline should
be required to configuration manage their model.

 8

Figure 7 Specialty Engineering Scoping Matrix

2.2.4 Environmental Requirements

The environment includes everything in the Universe less the system of interest. Most of the
environment we can disregard, of course. We do have to decide the scope of the environmental
space that must be considered. It is convenient to partition all environmental stresses into the
several classes or entities shown in Figure 8. The natural environment consists of space, time,
and natural stresses such as rainfall, Lunar or Martian dust, or atmospheric pressure as a function
of the mission space of the system. There are standards for most localities with which we would
ever have to deal so much of this work involves reading standards, tailoring them for the scope
of our system, and adjusting the range of these variables for what we define as normal.

A standards model will satisfy most of our needs at the system level but a threat analysis will add
good insights into any hostile intentions of adversaries. At the end item level it is helpful to build
a three axis model inter-relating product entities, processes that will have to be applied to them,
and environmental stresses applicable to those process steps that is referred to by some as an
environmental use profile. It often happens that particular product entities have to be used in
association with different sets of environmental stresses over the run of a mission. This model
forces us to map product entities to the processes to which we have also mapped environmental
stresses. From this model one can extract the union of all stresses applied in a mission for system
end items.

At the component level one can partition an end item into zones of equal environmental stress
and engage in a packaging study to determine where components will be installed. The
components then inherit the zone stresses.

 9

Figure 8 Environmental Classes

The cooperative environment consists of all of those systems intended to cooperate with the
system being developed and these are most often developed as interfaces between a pair of
systems. The non-cooperative interface consists of relationships between the system of interest
and sources of stress applied to the system unintentionally. Hostile stresses come from other
systems intent on damaging or reducing the effectiveness of our system. Self-induced stresses are
initiated by the system being developed often from energy sources within the system such as a
rocket engine causing tremendous acoustic vibration that effects everything in the vehicle while
it is climbing through the atmosphere.

As noted, the cooperative environmental relationships are commonly developed as interfaces
because there is another person or organization with which one can converse in a cooperative
fashion even to the extent of developing a mutually respected interface specification. Where the
author has gone astray in his modeling of environmental stresses in the past is that he has failed
to treat the other environmental classes in exactly the same fashion. We will simply extend the
system n-square diagram diagonal to include not only the cooperative system entities but all of
the other environmental influences as well. This diagonal happens, of course to coincide with the
product entity axis as it relates to the internal interfaces. So, we will extend this axis to include
the environment which will coincide with the diagonal of an extended n-square diagram to
include all external interfaces, not restricted to just the cooperative systems influences.

Figure 9 offers a schematic block diagram view of the relationship between the system of interest
and the environment with all of the external interfaces assigned generic MID. We may choose to

 10

recognize the outerface lines with MID starting with “I3” or not but there are situations where it
is very helpful. The figure also highlights the importance of the electromagnetic environment
effects (E3) classes that cut across the five environmental classes. Interestingly the E3 military
standard MIL-STD-464 is titled an interface standard. The author has become convinced that
environmental requirements are a subset of interface requirements.

The internal interface requirements should be identified based on an evaluation of how needed
functionality is associated with product entities through the allocation of performance
requirements to those product entities. All external interface requirements can be derived from
the functionality associated with the system environment through allocation of environmental
requirements to environmental entities.

In Figure 9 we will apply functional analysis linked to product entities through performance
requirements as the means to identify needed internal interfaces (I1) and functional analysis
linked to environmental entities through environmental requirements to identify all external
interface requirements (I2 and I3). We may choose to continue to refer to many of the external
requirements as environmental requirements out of respect for the historical path we have
followed to arrive at the present but if we choose we could rebuild the specification template to
recognize only performance, interface, and specialty engineering requirements because all
environmental requirements can be grouped with the external interface requirements.

Figure 9 Environmental Relationships

 11

2.2.5 Physical Process Model

Figure 3 offered a functional flow diagram of a space transport system but if truth be told when a
particular kind of system endures over a period of time the developing enterprise will often drift
into the use of a process diagram which this figure has more in common with. The difference
between functional flow diagram and a process flow diagram is in the meaning of the blocks. On
a functional diagram the block represents a function or activity the system, or entity thereof,
must complete or accomplish and at the time the diagram is created the developer commonly
may have no idea what the system will consist of. The functional flow diagram is used as a
means to determine what the system should consist of as described earlier. The blocks on a
process flow diagram represent physical actions that the system, or entity thereof, must
accomplish with full knowledge of what the system consist of. The physical process diagram is
very useful in logistics analysis and does have an application in environmental requirements
analysis.

For a heavily precedented system a process flow diagram could be employed rather than a
functional flow diagram where as in the development of an unprecedented system there is no
knowledge of what the system will consist of so we have to resort to the functional flow diagram
and allocation as an organized means to determine the physical composition of the system. A
locomotive company once hired the author to support them in their efforts to apply the systems
approach in the development of a new diesel electric locomotive, something they had never done
going back many years. They wished to treat the development as an unprecedented activity
because their competition was beating their pants off on three requirements. The company
actually employed a variation on PSARE without realizing it but with prior knowledge of the
subsystems that would be necessary.

Figure 10 is a process flow diagram the author used in the development of the AQM91 Firebolt
target drone. The blocks are identified with MID starting with the letter F but this is a physical
process diagram. The authors employer had inherited the development of the system that the
customer contracted with because of its displeasure of the prior developer. The design was
adequate but needed to be more easily manufactured and maintained in the field as well as safer
to operate. The propulsion system burned a rubber compound and inhibited red fuming nitric
acid (IRFNA) in a ram jet engine to achieve Mach 4 at 100,000 feet. Therefore, it was possible to
build a flow diagram reflecting what the previous contractor had tried to do so as to understand
how the system could be improved. Several improvements resulted.

3. Modeling Artifact Identification

In order to be able to establish traceability between requirements and the modeling artifact it was
derived from we have to be able to uniquely identify every modeling artifact from which
requirements might be derived. The author uses what he calls a modeling ID (MID) for this
purpose. His MID set for the functional UADF identifies artifacts by a alphanumeric string
starting with a capitol letter corresponding to the artifact type as follows: (F) Function, (A)
Product Entity, (I) Interface, (H) Specialty Engineering, (Q) Environmental, (P) Physical
Process, and (R) Requirement. The reader can see MID examples of F, A, I, H, and Q in Figures
3, 4, 6, 7, and 8 respectively. The author would start a process flow diagram block MID with a
letter P today but at the time he sketched the original Figure 10 he had not yet evolved a
universal MID scheme. Individual modeling sketches should be relatively simple but it is not

 12

difficult to use up all 10 Arabic numerals on one sheet so the author uses a base 60 system
employing the Arabic numerals, English alphabet capitol letters less “O” and lower case English
alphabet characters less “l”. Each layer simply adds another place value.

Figure 10 Process Flow Diagram

There is not a lot of history at this point on the use of this technique resulting in any kind of
convention so the enterprise adopting this approach should simply establish its own preferred
assignments. Table 1 shows a partial list from the author’s new “System Requirements Analysis”
book due from Elsevier in late 2013 derived from the author’s consulting company JOG System
Engineering. The paragraph number (PARA) included is the specification template paragraph
number where related requirements should appear. The department (DEPT) column gives the
department number for the functional department from which personnel should be acquired by a
program to do the related work. The PREFERRED MODEL column tells the functional UADF
model those people should apply on a program. In the book noted, this table is three pages long
including some MD related to MSA-PSARE and UML-SysML UADF so the table has been
truncated here to only give a few examples.

F47E

MISSION PLANNING
AND PROGRAM
DEVELOPMENT

UPLOAD AND
CHECKOUT

PREFLIGHT
SERVICING

F475 F476

READY
STORAGE

F474

MANAGEMENT
AND

SUPERVISION

F47P

F473

F47M

UNSCHEDULED
TARGET

MAINTENANCE

TARGET SYSTEM
TEST

TARGET RECEIPT
AND STORAGE

F471

L1
TARGET

AIR
VEHICLE

FROM
SUPPLY

TARGET
BUILDUP

F472

CAPTIVE CARRY
AND LAUNCH
OPERATIONS

F477

INTERMEDIATE
MAINTENANCE

F47N

F478

MISSION
OPERATIONS

LAUNCH
AIRCRAFT
RECYCLE

COMBATANT
AIRCRAFT
RECYCLE

F47F F47D

6

4
5

7 8 9
F479

RECOVERY/
RETRIEVAL

OPERATIONS

2

RANGE
SYSTEMS
RECYCLE

F47K

F47G

RETRIEVAL
SYSTEM
RECYCLE

ASSOCIATE SYSTEMS SUPPORT

POST FLIGHT
MAINTENANCE

(DRY)

POST FLIGHT
MAINTENANCE

(WET)

F47A

F47C

13

11

3

F47

USE
TARGET
SYSTEM

(6) SOME FLOW LINES ILLUSTRATED ON LOWER TIER DIAGRAMS NOT SHOWN
 HERE IN THE INTEREST OF CLARITY OF PRIMARY FLOW.
(5) BLOCKS WITH # IN LOWER LEFT CORNER REQUIRE COMPUTER
 SOFTWARE.
(4) BLOCKS WITH CORNER AT LOWER LEFT CORNER ARE EXPANDED ON THE
 INDICATED SHEET NUMBER.
(3) REFER TO APPENDIX C FOR INTERFACE RELATIONSHIPS BETWEEN PRODUCT
ENTITIES
(2) REFER TO APPENDIX C FOR SYSTEM ARCHITECTURE.
(1) CODES IN LOWER RIGHT CORNER ARE TRA FUNCTIONAL CODES (FID).NOTES:

USE
TARGET
SYSTEM

F47

1

 13

Table 1 JOGSE Universal Modeling ID List Sample

MID MEANING PARA DEPT PREFERRED MODEL
---------- --- ------------ --------- ---------------------------------------
A Product Entity 3.1 331 Product Entity Block Diagram
F Functionality 3.1 331 Functional Flow Diagramming
H Specialty Engineering Domain 3.4 331 Specialty Engineering Scoping
 Matrix and Specialty Models
H1 Engineering Domains 3.4.1 3 -
H11 Aerodynamics 3.4.1.1 321 Modeling and Simulation
H12 Thermodynamics 3.4.1.2 322 Thermodynamic Analysis
H13 Structural Integrity 3.5.1.3 323 Modeling and Simulation
H14 Structural Statics 3.5.1.4 323 Modeling and Simulation
H15 Structural Dynamics 3.5.1.5 323 Modeling and Simulation
H2 Logistics Domains 3.4.2 4 -
I Interface 3.3 331 Coordinated N-Square Diagram
I1 Internal Interface 3.3.1 331 Coordinated N-Square Diagram
I2 External Interface 3.3.2 331 Coordinated N-Square Diagram
I3 Outside Interface 3.3.3 331 Coordinated N-Square Diagram
P Process 331 Process Flow Diagram
Q Environment 3.5 331 -
Q1 Natural Environment 3.5.1 331 Standards
Q11 Space 3.5.1.1 331 Mission Analysis and Packaging
Q12 Time 3.5.1.2 331 Time Lines
Q13 Natural Stresses 3.5.1.3 331 Standards
Q2 Cooperative Environment 3.3.2 331 N-Square Diagram
Q3 Non-Cooperative Environment 3.5.2 331 Threat Analysis
Q4 Hostile Environment 3.5.3 331 Threat Analysis
Q5 Self-Induced Environment 3.5.4 331 -

4. Specification Templates

A system development enterprise should possess a set of specification standards that is
supportive of their customer base preferences possibly tailored to reflect their own preferred
practices. The author’s preference is MIL-STD-961E tailored to coordinate the Section 3
structure with the model selected by the enterprise as suggested in Table 2. If the enterprise were
applying the functional model the Section 3 structure would follow the pattern shown below:

3. REQUIREMENTS 3.3 Outside Interface Requirements
3.1 Modeling 3.4 Specialty Engineering Requirements
3.2 Performance Requirements 3.5 Environmental Requirements
 3.5.1 Natural Environmental Requirements
3.3 Interface Requirements 3.5.2 Non-Cooperative Environmental
 Requirements
3.3.1 Internal Interface Requirements 3.5.3 Hostile Systems Environmental
 Requirements
3.3.2 External Interface Requirements 3.5.4 Self-Induced Environmental
 (Cooperative Systems Environmental) Requirements

 14

The author confesses to a great temptation to include all environmental requirements under
paragraphs 3.3.2 and 3.3.3 covering interfaces of the type I2 and I3 in Figure 5 respectively.
Then under each of these paragraphs would be paragraphs 3.3.X.1 through 3.3.X.5
corresponding to natural, cooperative systems, non-cooperative systems, hostile systems, and
self-induced respectively. The paragraph 3.5 would be deleted because all of the environmental
requirements would be covered as interfaces. The resistance to surrendering to this temptation is
that there is a long tradition in recognizing the special nature of environmental relationships. We
have no obligation to the past however to fail to see the reality that environmental relationships
can be usefully represented as interfaces.

5. Requirements Analysis Sheet (RAS)

The RAS ties together the modeling sources, specification template structure, and requirements
content of the specifications. It can be captured in a paper and pencil table, computer
spreadsheet, or computer database constructed with records and fields. Each record should be a
unique requirement for a particular entity. Every requirement in the system should be in this
RAS. If you capture the RAS in a database then it is possible to not only retain the content under
configuration control but actually publish the specifications. To print a specification one simply
orders the database content by paragraph number and sets the filter for printing only content
corresponding to a particular product entity. The specification will come out of the printer in
paragraph number order. One can purchase database systems that can support a wide range of
capabilities beyond these simple ones. The author actually prefers a primitive structure where the
database captures the essential information and computer code combines it to form English
sentences but Table 2 is based on capture of requirements in complete sentences.

A primitive requirement statement replaces the TEXT field in Table 2 with a series of four fields:
(1) Attribute that tells what must be controlled, (2) Relationship that tells how the attribute is
related to the numerical value, (3) Value that gives a numerical figure, and (4) Units that tells
what units the value is measured in. For example the statement “Weight < 134 Pounds” is an
example of a primitive statement. Yes, these statements may take on a more complex form than
this simple view including a range of values or a tolerance but those extensions can be easily
handled. There are also cases where the requirements are qualitatively stated but this too can be
dealt with in the primitive structure. The attributes in these statements come from modeling
work. The values and relationships come from the application of good engineering skill to the
problem and the values of related requirements in the parent item specification.

The advantage of a primitive statement is that the value can be stated in a numerical field and a
database system within which the requirements are captured can manipulate these numerical
values for many useful purposes such as searching for opportunities to deal with margins.
Writing the code to string the primitive statement into a normal English sentence is not difficult.
One could even argue that there is no real need to do so unless you are wedded to traditional
specification structures. Figure 11 offers an example of a single record in the RAS. There are
many other fields that the RAS could benefit from and the reader can think of some of them
easily. Vertical traceability and verification traceability are a couple of fields that come to mind.

 15

Table 2 RAS Record Structure

FIELD FIELD TITLE DATA TYPE
--------- ----------------------------- --
PARA Paragraph Number Decimal delimited numerical string
TITLE Paragraph Title Text with leading letters capitalized
FID Modeling ID MID string of base 60 characters
PID Product Entity ID MID string of base 60 characters beginning with A
RID Requirements ID System unique string of characters identifying the requirement
TEXT Requirements Text Text providing the requirement statement in complete

sentences

In that there are several MID in the tabular RAS that must appear in every record it is necessary
to refer to those several MID uniquely. We can use the terms FID, PID, and RID for functional,
product, and requirement ID respectively for this purpose.

Figure 11 Example of RAS Content

6. The RAS In Graphical Form

In that the human mind if so effective in understanding concepts presented in graphical form, an
attempt has been made to state the RAS in the form of sketches. Once again, this example is
employing the functional UADF. We will use a three-dimensional structure where points, lines,
and planes have particular significance relative to the tabular, text-based RAS and the modeling
work that drives RAS content. The reader will observe four planes in the graphical RAS
corresponding to the four kinds of requirements must be derived. Generally points on these
planes represent specific requirements and the axes correspond to particular modeling artifacts
like functions and product entities. The author has built a similar structure for the MSA-PSARE
UADF and will apply it to the UML-SysML UADF shortly.

6.1 The Performance Requirements Plane

The first component of the graphically expressed RAS is formed by a map between functions
and product entities where intersection points on the resultant plane represent performance
requirements. Figure 12 shows this construct. The reader will note that function “F” is used as
the basis for deriving the Need Statement that is instantly allocated to the system assigned MID
“A”. Two other functions have been identified with performance requirements derived that are
allocated to product entities.

 16

All of the performance requirements derived from functions and allocated to product entity A43
will appear in the item A43 specification with paragraph numbers beginning with 3.2. Note in
Figure 11 that paragraph number 3.2.5.1 was assigned. The order in which they appear is up to
the person doing the work but an organization in a particular product field could make some
rules for this. The performance requirements are identified with a MID known as a Requirement
ID that is assigned randomly but uniquely that is used for linking requirements for traceability
purposes. Paragraphs numbers can change in a specification but Requirements IDs should remain
stable under changes to the requirements and their paragraph numbers. If these Requirement IDs
(RID) are unique for all requirements across a whole system, one might question the availability
of enough unique RIDs for all of the specifications required on a program. In this case we are
using a six-place (leading R same for all requirements) base 60 ID resulting in 606 RIDs or
46,656,000,000 requirements. It is only Sections 3 and 4 that would need RID assigned so if we
exceed this number for any system we have been too busy writing requirements.

Figure 12 Performance Requirements Plane

6.2 Interface and Environmental Coverage

6.2.1 The Interface Plane

An n-square diagram can be used to depict all interface requirements but we have to orient it
correctly for maximum benefit. This diagram can be started with two blocks on the diagonal one

 17

for the system represented by product entity “A” and the other by environmental ID “Q” for the
whole environment as shown in Figure 13a. The expansion of the n-square diagram for the
internal interface for the system might evolve as shown in Figure 13b and further showing the
internal and external subsystem interfaces in Figure 13c.

It is important to recognize that the interface identification will expand from top down as the
product system structure expands under continued functional analysis. We identify needed
interfaces between the indicated product entities by marking the squares off the diagonal. An
arrow at one corner indicates the intended directionality meaning that all marked squares above
and to the right of the diagonal mean one direct of source and destination and those marked
below and to the left of the diagonal the other. Squares unmarked mean that there is no
corresponding interface identified as of that date. Each marked square represents one or more
interface requirements each of which would bare a requirement ID linked in the RAS where the
corresponding requirement statement would be included.

Figure 13 Progressive Interface Decomposition

As a system development program continues to define the architecture of the system using a
disciplined top-down modeling approach it may be realized at a lower tier that an interface is
needed that was not accounted for at a higher tier and the interface baseline may have to be
rippled to account for the change. While not a desirable outcome, the synthesis work at any time
may also discover as the work proceeds that a great opportunity was missed in earlier work and
the baseline should be changed to reflect having taken advantage of that opportunity. It cannot be
overstated how important it is that the architecture and requirements engineering work be
coordinated with the trailing system synthesis work developing design concepts thought to be

 18

compliant with requirements. Having a clear modeling baseline under configuration control is
every bit as important as having the design drawings under configuration control.

The reader should note that the diagonal of an n-square diagram can be marked with the product
structure because from an interface perspective it represents the internal interfaces of the product
entities identified on the diagonal. As the systems development process continues we can
continue to expand the n-square diagram as suggested on Figure 13 where what is one diagonal
block for a product entity on Figure 13b becomes expanded to reveal 8 subordinate entities on
Figure13c representing the immediately subordinate entities for that subsystem.

Ideally, there would be a lot of internal interfaces at lower tiers with relatively few interfaces
between higher tier entities. Figure 13b is characterized by all but one possible interface being
needed at that level. This is often a signal that there will be a lot of difficulty in developing
subordinate entities because of the interface intensity. The reader can see from Figure 13 how the
system engineer can use an n-square diagram to help determine where the developing system
will most need his or her help. Combine this view with the number of different disciplines
needed on the related teams that drives the number of knowledge domains involved and a fairly
clear picture of needed program system engineer loading can be observed because system
engineers should live at the product and knowledge boundaries.

It is true that identification of needed interfaces in the functional model is a little strained but
they are all pre-determined by the way that we have associated functionality with the product
entities. It is part of the early system synthesis work to build the interface needs as the product
entity structure is defined as a result of functional development, performance requirements
derivation and allocation to product entities thus continuing the advance the expansion of the
lower tier of product structure. At one INCOSE Symposium the author interviewed several long
time system engineers he respected about how they identified interfaces using the functional
model and they all replied that it was obvious that particular interfaces were needed and none of
them had any special method. It was just obvious. It probably is for any one with a great deal of
experience in a particular product field but the secret is that one must remain attuned to the way
functionality is allocated to product entities to be able to appreciate those obvious intuitions.

Figure 14 shows how interface requirements appear on the interface plane coordinated with the
product entities that appear as the terminals for those interfaces. These requirements are entered
into the RAS linked to their RID. The plane has been rotated 45 degree to the left in preparation
for the next step. In Figure 14, note the directionality arrow that means in this case that A24 is
the source terminal for the interface and A43 is the receiving terminal. If the directionality were
the opposite of this the interface would have been identified in the corresponding square on the
other side of the diagonal. If the interface were bi-directional (shown on a schematic block
diagram with an arrow on both ends of the line) it would be shown in both product entity pair of
interface intersecting blocks.

 19

Figure 14 Rotated Internal Interface Plane

The bi-directional case raises another issue and that is whether we should recognize it as a single
interface RID or two, one for each direction. It is true that the character of the interface could be
significantly different in the two directions. For example, DC power could be supplied from A24
to A43 in the case of Figure 14 and a signal could be superimposed on this same line coming
from A43 back to A24. This latter interface situation is not, of course, shown on Figure 15 so
does not exist in this example. The author is inclined to assign different RID for the two
directions in a bi-directional interface case even where the character of the interface is identical
such as two way flow of data of the same structure on a bus.

6.2.2 Orientation of the Product Entity Internal Interface Plane

It was noted earlier that it was important to recognize the orientation of the n-square plane and
the importance in this orientation is in recognizing that the n-square diagonal happens to
coordinate with the performance requirements plane product entity axis. If we lay the diagonal
onto the product entity axis as in Figure 15 then the off-diagonal squares represent the possible
interfaces between these product entities.

 20

Figure 15 Internal Interface Plane Orientation

6.2.3 Extension of the Internal Interface Plane to Cover the Environment

The author has included some very tortured attempts to illustrate the environmental requirements
in a graphical image of the RAS in the past and apologizes for inflicting them on any readers
unfortunate enough to have been exposed to them. It turns out to be very simple to include them
in the graphical RAS and this is the motive for offering this paper in the first place. The attentive
reader will have recognized that so far we have not dealt with external interfaces, only internal
ones. We aligned the diagonal of the interface plane with the product entity axis of the function
allocation plane. That plane you will note has also not recognized entities in the environment of
the system so far. So let us extend the product entity axis of that plane to recognize
environmental entities to which functionality may also be allocated as shown in Figure 16. We
can also partition that axis extension to recognize the environmental classes, or entities, shown in
Figure 8. Now we may extend the interface plane to cover both internal and external
(environmental) entities. The internal interface plane only identifies interfaces I1 shown on
Figure 5. We may now identify interfaces I2 between system entities and environmental entities.
We may also identify interfaces I3 between environmental entities on both terminals if we
choose. We may also identify those interfaces with RID in our RAS and assign paragraph
numbers in the specifications for the interface requirements whether they be derived from
functionality allocated via performance requirements or environmental requirements.

 21

Figure 16 Extended Interface Plane

Note that while the rotated extended interface plane does allow us to visually appreciate the total
interface issue in the development of any system, it does not solve the problem of how to explain
how the engineer determines in an organized fashion what interfaces will be needed based on
knowledge of how performance requirements derived from functionality were allocated to
product and environmental entities. We will take up that issue shortly after dealing with the
specialty engineering plane.

In Figure 16 we have done one more thing that is not very conventional. We have established a
relationship between environmental entities and system functionality. Certainly, you would agree
that there should be a relationship between system functionality and the entities comprising the
cooperative environment, Q2. The thinking process for establishing these relationships is
essentially the same as that for product entities but there may be many cases where we recognize
the need for a cooperative entity first by recognizing an interface needed to support a product
entity interface. Clearly, there should be a relationship between system functionality and the
environment more generally. Because we intend to fly in the atmosphere recognized in system
functionality there are many Earth atmosphere entities that have to be coordinated with product
entities including lift provided by air motion relative to wing surface characteristics. It should be
noted that our two-dimensional paper has forced the author to lay the interface plane in the same
plane as the other planes in Figure 16 and that it is intended that the interface plane would share
the horizontal axes with the other planes but be 90 degree rotated from that plane.

 22

6.3 Specialty Engineering Plane

Our evolving graphical RAS in now complete with one exception. We have not yet dealt with
specialty engineering requirements but this can done by adding a specialty engineering plane like
that shown in Figure 16. One axis includes all of the specialty engineering domains we identified
for our system in the specialty engineering scoping matrix in Figure 7. The other axis is the
product entity axis that coincides with the other applications of this axis in Figures 12, 15, and
16. Each marked intersection on the plane, illustrated in isolation in Figure 17, corresponds to a
specialty engineering requirement identified with a RID and associated with a RAS entry that
flows into an item (A43 in this case) specification. All of the specialty engineering domains
allocated to the line A43 represent the set of specialty engineering requirements that will appear
in the specification for that item under Paragraph 3.4. The specialty engineer for the domain in
each case will apply the domain model to derive the requirement value and enter it in the RAS
linked to the appropriate entity.

6.4 Complete Graphical RAS

Figure 18 shows all of the parts of the graphical RAS. The figure is split into three views to
portray each plane properly. The interface plane diagonal is, of course, coincident with the
product entity axis extended to include the environmental entity axis but is 90 degrees rotated as
indicated in the three-view drawing.

Figure 17 Specialty Engineering Plane

 23

Figure 18 Complete Graphical RAS Structure

7. Disciplined Interface Identification Algorithm

Figure 15 shows a pair of the function, performance requirement, and product entity strings
where it has been determined by whatever means that the pair has established a possible demand
for an interface between product entities A24 and A43 with A24 as the source to which an
interface requirement has been identified and assigned requirements ID (RID) R6Ih743. The
reality is that an n-square diagram is not an analytical model rather a reporting medium. The
question remains, how did the mind of the system engineer actually reach a conclusion that an
interface is necessary in this situation. Every function-performance requirements-product entity
trio does not necessarily demand identification of an interface but every needed interface will be
pre-determined by a pair of these trios.

 24

It is difficult to create a view showing that we must evaluate every pair of these trios for each set
of functions that we derive performance requirements from and allocate to product entities.
Figure 15 is a three-dimensional construct shown in two and if we place enough information on
the figure to show even three or four trios to display more than a single interface it will be very
hard for the reader to understand the message displayed. So, the reader will have to try to master
the idea that it may require the system engineer to evaluate 1000 trio pairs to identify 100
interfaces.

So, we might ask, how many combinations would I expect to have to evaluate to make this
technique effective? Well, the number of intersections on a functional plane is simply the
number of functions at that level times the number of product entities identified at that time. If
we were dealing with say 8 functions and 8 product entities, the number of intersections in which
performance requirements could be placed would be 64. Let us assume that the functional
analysis has resulted in the 20 performance requirements having been derived and allocated to
product entities. The number of combinations of 20 elements (n) taken 2 at a time (k) is n!/k!(n-
k)!. In this case the number of combinations would be 20!/2!(20-2)! = 2.4329x1018/2(6.4024x1015
= 190. So, to fully implement the suggested analysis for interface identification in this case it
would involve evaluation of 190 pairs of trios for interface need. There may be a conclusion on
some of these cases that there is no need to mark a need for in interface on the n-square diagram
and in other cases an off-diagonal intersection will have to be marked. Thus the n-square
diagram becomes a means of reporting needed interfaces rather than a medium in which the
interface analysis is conducted under this method.

It is through this process of evaluating pairs of trios that we can mark the intersections of the n-
square diagram reporting the need for indicated interfaces finally answering the question of how
the human mind determines that an interface is needed between two entities. The very
experienced system engineer commonly need not depend on an organized and exhaustive study
such as that suggested here but the mind of a good system engineer is subconsciously
recognizing the functional relationships between the evolving product entities. Every trio pair
does not an interface demand but every interface is pre-determined by a trio pair.

In each case one has to determine which product entity is the source and which the destination,
of course, and the media in which the interface will be completed (electrical, mechanical, etc).
Yet it is still not as simple as described so far. It happens as noted that there is parallel synthesis
work going on at this time to come up with design concepts that have a chance of complying
with the requirements identified by that time. The anticipated concept implementation will have
a lot to do with selecting the medium of the interface, of course. In the process of applying this
intense evaluation of possibilities the system engineer might in addition to identifying needed
interfaces supportive of the current and building design concept gain insight into some interface
possibilities that would be supportive of growth capabilities some already conceived and others
that no one has thought of.

Clearly this algorithm can be extended to the external interface requirements aligned with
environmental entities and requirements for both class I2 and I3 interfaces. Most system
engineers, and even more so program managers worried about the number of man hours required
to accomplish his work, would conclude that we don’t have to apply this exhaustive algorithm to
be successful so long as we are managing a well conceived modeling approach coordinated with

 25

a well done early synthesis activity. Unfortunately this combination is less often achieved than
we would like.

8. Verification Requirements

The discussion in prior paragraphs covers all of the content of Section 3 of every program
specification. Each of these specifications should, of course, include requirements in Section 4
for the verification requirements crafted for each product requirement appearing in Section 3.
Since the graphical RAS we have created is a three-dimensional artifact it is not so easy to
simply add another plane for verification requirements and link it to the product requirements.
We can, however, support this need with a simple traceability table showing the Section 3
requirements in one column and the Section 4 requirements in another. This can actually be
satisfied in the text-based RAS as noted. There is a stronger story that is required here, that will
not be developed in this paper, to link the verification requirements to the content of the
verification task plans, procedures, and reports prepared for each of those verification tasks.

9. Summary, Prescription, and Closing

This paper has offered a comprehensive story of the flow of work performed by a system
engineer early in a program when the architecture of the system is being established and
requirements derived from the related modeling entities and included in specifications for the
system entities. Figure 19 is an attempt to graphically present this story tying the modeling work
more closely with the RAS than the author had previously succeeding in doing. We model the
problem space and derive all requirements that will appear in program specifications from those
modeling artifacts. The model used in the paper for Figure 19 has been the functional one. If
employing the MSA-PSARE model we would employ a data flow diagram (DFD) in which the
bubbles represent functionality and we overlay that functionality with super bubbles to allocate
the functionality to product entities. The bubbles are joined by the directed line segments that
immediately identify needed interfaces between the super bubbles. PSARE permits the bubbles
to represent hardware as well as software functionality and interfaces other than just data.

In any case performance requirements are derived from the bubbles and their relationships, each
uniquely identified, and included in the RAS linked to the bubbles or functions from which they
were derived. The RAS includes the uniquely identified modeling artifacts from which we derive
performance requirements. These performance requirements are allocated to specific product
entities about which specifications are prepared and these specifications are prepared in
accordance with a template giving us the paragraph numbers for the requirement derived from
the modeling work. The same general process could be employed if applying the UML-SysML
UADF using a combination of activity, sequence, and state diagrams among others to gain
insight into performance requirements. These other two UADF include product entity and
interface modeling but are weak in specialty engineering and environmental modeling but those
modeling components can be applied from the functional UADF.

 26

Figure 19 The Resultant Progression

The author believes that this pattern could also be applied if employing UPDM expressed in
UML-SysML modeling artifacts. It is not believed that all 52 DoDAF diagrams would be
necessary to support the requirements engineering work that may be required to comply with
customer needs for architecture development and communications. If the government maintains
an interest in DoDAF the ultimate modeling approach may become UPDM expressed in UML-
SysML with a subset employed to comprehensively develop the content of the specifications.

This paper has focused on requirements work and given the companion synthesis work
insufficient coverage. The reality is that the view offered in Figure 2 is critically important. As
the requirements work for one layer of system architecture is completed the program must take
action on the next layer of synthesis work. Whether this involves immediate product plane work
following the completion of that functional plane or some delay like two layers rather than one is
a matter of the art of system engineering. This is also the area that must be further explored to
fully develop how the mind of the system engineer may act in an orderly fashion to identify the
need for a particular interface using the functional UADF. The reader has hopefully observed the
ease with which needed physical interfaces are determined from MSA-PSARE modeling
compared to the opaque window through which the system engineer must gaze when applying
the functional model. This comparison is a little unfair to the functional model perhaps in that it
is easy to identify physical interfaces in MSA-PSARE after the DFD has been overlaid with
super bubbles but the problem remains essentially the same as in the functional model if one
steps back to how the analyst identifies the need for the directed line segments in the DFD in the
first place.

 27

The author’s experience over many years has been that few programs do a good job in
implementing the work discussed in this paper. So, we might ask, how would an organization
improve it’s ability to do this work well. The author’s prescription follows:

1. Adopt a UADF and insist that all persons doing architecture development and
requirements analysis use it on every program.

2. Adopt a way of uniquely identifying all modeling artifacts from which requirements
may be derived.

3. Adopt a means by which personnel may capture modeling and specification content
such that they may be configuration managed. There are not any computer tools
known to the author that could capture all of the modeling and documentation
features covered in this paper but one could build a simple text-oriented database
linked to hand drawn or computer application graphical modeling artifacts.

4. Adopt a means for personnel to accomplish modeling work and retention of masters
in the formal system baseline documentation that can be configuration managed.

5. Adopt a set of specification templates and to the extent possible develop a companion
set of data item descriptions that tell how to translate a template into a program
specification. The specification templates required include the following (items b, c,
d, and e may require hardware and software versions but should apply the same
UADF in deriving content):

a. System Specification
b. Item Performance Specification
c. Item Detail Specification
d. Interface Performance Specification
e. Interface Detail Specification
f. Part Specification
g. Material Specification
h. Process Specification

6. Establish a policy such as Table 1 suggests that clearly assigns responsibility for all
specification content to personnel from specific functional departments on all
programs. Departments identified will be responsible for preparing their department
members for performing the related work on programs.

7. Prepare a written document telling how this work is to be done on programs.

8. Train all personnel who have a role in this work in the appropriate parts of it assigned
to their functional department.

9. Establish a quality assurance means that will assure that the work is accomplished in
accordance with the prepared instructions.

 28

Managers in industry who are disappointed by program performance over the years should be
especially inclined to look into ways of improving architecture and requirements performance
because it is the beginning of success or failure on a program. So often managers find themselves
late in a program with few desirable courses of action because of choices made very early in the
program that by the time serious program problems have appeared they cannot be easily traced to
poor requirements work performance. Often this is realized during the time verification work is
going on and there simply are not enough money, time, or customer good will remaining even if
a suitable corrective action were known. Previously in Paragraph 8 the author noted that a
stronger story was needed to extend the traceability record beyond the discussion in this paper.
The author’s paper titled “Affordable Requirements Verification” appearing in the July 2013
(Volume 16 Issue 2) INCOSE Insight magazine covers a final solution to the problems often
occurring on programs during verification.

 A-i

122A

JOG SYSTEM ENGINEERING
GRAND SYSTEMS DEVELOPMENT

TRAINING PROGRAM
INTRODUCTORY PRESENTATION

VOLUME 122
THE MODEL, THE TEXTUAL AND GRAPHICAL
RAS, AND THE SPECIFICATION - A LOGICAL

AND EFFECTIVE PROGRESSION
STUDENT MANUAL

EXHIBIT A
PRESENTATION MATERIALS

 A-ii

1	
121A1-	

VERSION 14.0 122A-1 c JOG System Engineering

THE MODEL, !
THE TEXTUAL AND GRAPHICAL RAS, !

AND THE SPECIFICATION –!
A LOGICAL AND EFFECTIVE !

PROGRESSION!

JOG SYSTEM ENGINEERING!
GRAND SYSTEMS DEVELOPMENT

TRAINING PROGRAM INTRODUCTORY PRESENTATION

Presented By!
Jeffrey O. Grady!

(858) 458-0121
jeff@jogse.com

VERSION 14.0 122A-2 c JOG System Engineering

Who Is Jeff Grady?!
CURRENT POSITION!
! 1993 – PRESENT !
! ! Owner, JOG System Engineering!
! ! System Engineering Assessment, Consulting, and Education Firm!
PRIOR EXPERIENCE!
! 1954 - 1964 U.S. Marine Corps!
! 1964 - 1965 General Precision, Librascope Division!
! ! Customer Training Instructor, SUBROC and ASROC ASW Computing Systems!
! 1965 - 1982 Teledyne Ryan Aeronautical!
! ! Field Engineer, AQM-34 Series Special Purpose Aircraft Systems!
! ! Project Engineer, System Engineer on Unmanned Aircraft Systems!
! 1982 - 1984 General Dynamics Convair Division!
! ! System Engineer, Cruise Missile, Advanced Cruise Missile!
! 1984 - 1993 General Dynamics Space Systems Division!
! ! Functional Engineering Manager Systems Development Department!
FORMAL EDUCATION!
! SDSU BA Math, UCSD Systems Engineering Certificate,!
! USC MS Systems Management With Information Systems Certificate!
INCOSE !Founder, Fellow, ESEP, and First Elected Secretary!
AUTHOR!System Requirements Analysis (3), System Integration, System!
! ! ! Validation and Verification, System Verification, System Engineering

! ! Planning and Enterprise Identity, System Engineering Deployment, System!
! ! ! Synthesis, System Management!

2	
121A1-	

VERSION 14.0 122A-3 c JOG System Engineering

“System Requirements Analysis, 2nd Edition”, Jeffrey O. Grady,
Elsevier Academic Press, 2014!

"The Model, the Textual and Graphical RAS, and the
Specification – A Logical and Effective Progression", Jeffrey O.
Grady, paper not yet published, 2013!

"Universal Architecture Description Framework (UADF)",
Jeffrey O. Grady, Systems Engineering, The Journal of The
International Council On Systems Engineering, Volume 12
Number 2, Summer 2009 (Best Paper 2009)!

"Affordable Requirements Verification", Jeffrey O. Grady,
INCOSE Insight, July 2013 (Volume 16, Issue 2)!

The Principal Presentation References!

VERSION 14.0 122A-4 c JOG System Engineering

New System Requirements Analysis
Book in E-Book Format

3	
121A1-	

VERSION 14.0 122A-5 c JOG System Engineering

Presentation Objective

Published
Specifications	
Model the Problem Space

Annotating Artifacts With MID	

MID	
 REQUIREMENTS	
 ENTITY	
 SPECIFICATION	

List Artifacts in RAS in
MID Alphanumeric Order	

Allocate
Requirements	

Derive
Requirements	
 Employ Universal

Format For Entity
Specification	

RAS	
 And on to
Verification	
Model	

VERSION 14.0 122A-6 c JOG System Engineering

What Is a System?

•  Collection of product entities intended to achieve a
specific function

•  Immersed in an environment
•  Product and environmental entities inter-related

through interfaces
•  Product and interface entities clearly defined in a

set of specifications where all of the content has
been derived though application of a model to the
problem space

4	
121A1-	

VERSION 14.0 122A-7 c JOG System Engineering

Systems Development

•  Define the problem to be solved in a set of product
and interface entity specifications

•  Solve the problem through synthesis in a three-step
process

– Design
– Procurement
– Manufacturing

•  Determine extent to which entities and the system
comply with the content of the specifications
through verification

•  Manage the program well throughout its
development period

VERSION 14.0 122A-8 c JOG System Engineering

Enterprise Common Process View
of System Life Cycle

5	
121A1-	

VERSION 14.0 122A-9 c JOG System Engineering

Major Problem on All Programs -
Specification Content

•  Each specification contains the essential
characteristics its product or interface entity must
possess in the form of requirements

•  An enterprise should derive the content of all
specifications on all programs using a single
comprehensive universal architecture description
framework (UADF) model

– Functional
– MSA-PSARE
– UML-SysML
– UPDM maybe

•  Adopt the Model-RAS-Specification Sequence using
your selected UADF and a template coordinated
with it

VERSION 14.0 122A-10 c JOG System Engineering

Models Channel Requirements Into
the Human Mind Through Vision –

A Picture is Worth 103 Words

PROBLEM!
SPACE!

ANALYST

FUNCTIONAL!
FACET!

PHYSICAL!
FACET!

BEHAVIORAL!
FACET!

VISION

HAND-EYE
COORDINATION

Hmmm, The aircraft
must travel from A to B

on a leg. How fast
would be appropriate

and at what
altitude?

6	
121A1-	

VERSION 14.0 122A-11 c JOG System Engineering

The First Objective of Modeling!
 - Architecture!

•  What mission objective does the customer wish to
achieve?

•  What product entities shall the system consist of?
•  How shall those product entities be inter-related

through interfaces?
•  What does the system environment consist of?
•  How are the product entities related to the

environment?
•  What specialty engineering domains must be

respected in the design?

VERSION 14.0 122A-12 c JOG System Engineering

The Second Objective of Modeling!
 - Requirements!

Something wanted or!
necessary.!

Something essential !
to the existence or!
occurrence of an !
entity.!
A necessary character-!
istic or attribute of some!
thing (or entity).!

ENTITY!

7	
121A1-	

VERSION 14.0 122A-13 c JOG System Engineering

Progressive Modeling

From work of Brian Mar and Barney Morias

VERSION 14.0 122A-14 c JOG System Engineering

Three UADF Are Available

•  A UADF is a comprehensive modeling
approach in that it matters not how you will
implement the solution in HW, SW, or people
doing things

•  One model is equally effective in HW and SW
•  Pick one

– Functional
– MSA-PSARE
– UML-SysML
– UPDM maybe

8	
121A1-	

VERSION 14.0 122A-15 c JOG System Engineering

Functional UADF Functional Flow
Diagramming

But this technique will work with any UADF.

VERSION 14.0 122A-16 c JOG System Engineering

TITAN IV SYSTEM!
PRODUCT ENTITY BLOCK DIAGRAM!

SHEET! ENG! DATE!10! 11-13-90!

TITAN IV!
VEHICLE!

A1!

CORE!
VEHICLE!

SOLID!
ROCKET!

BOOSTERS!
A11!A13! A12!

PAYLOAD!
FAIRING!

CENTAUR!
UPPER STAGE!

IUS!
UPPER STAGE!

A15!

STRUCTURAL!
SYSTEM!

PROPULSION!
SYSTEM!

PROPELLANT!
CONTROL!
SYSTEM!

REACTION!
CONTROL!
SYSTEM!

HYDRAULIC!
SYSTEM!

PNEUMATIC!
SYSTEM!

ELECTRICAL!
POWER!
SYSTEM!

RANGE !
SAFETY!
SYSTEM!

TRACKING!
SYSTEM!

TELEMETRY!
& INSTRUMENT-!
ATION SYSTEM!

FLIGHT!
CONTROL!
SYSTEM!

INSULATION!

MISSION!
PECULIAR!

KIT!
A1411!

A1412!

A1413!

A1414!

A1415!

A1416!

A1417!

A1419!

A141A!

A141B!

A141C!

A141D!

A141E!

FLIGHT!
SOFTWARE!

A1418!

STAGE I!

STAGE II!

INTERSTAGE!
ADAPTER!

CENTAUR!
ADAPTER!

SRM 1!

SRM 2!

A111!

A112!

A113!

A114!

A121!

A122!

A141E!

TITAN IV!
GROUND!
SYSTEM! A2!

Functional UADF Product Entity Diagram
TITAN IV
SYSTEM

A

A14!

Can Include Software

9	
121A1-	

VERSION 14.0 122A-17 c JOG System Engineering

Functional UADF
Top-Level View of System Interface

I3

Internal Interface
 I1 Innerface
External Interface
 I2 Crossface
 I3 Outerface

VERSION 14.0 122A-18 c JOG System Engineering

Functional UADF
Two Interface Reporting Models

Schematic block diagramming

N-square diagramming

Lines define
interfaces

Blocks are objects
selected only from the
product entity
structure

Marked intersections define interfaces

Diagonal blocks are objects only from
product entity structure

Apparent ambiguity reflects directionality

X X
X

X
X

X

A1
A2

A4

A3
A5

A1
A2

A3
A4

A5

A6

A6

X

X

X
X

X

X

10	
121A1-	

VERSION 14.0 122A-19 c JOG System Engineering

2.1!

1.1! 1.2! 1.3! 1.4!

2.2!

2.3!

3.1!

3.2!

4.1!

4.2!

5.1!

5.2!

5.3!

6.1!

H71!

1.5!
H21!

A11! A12! A13! A14!

H22!

H23!

H31!

H32!

H41!

H51!

H52!

H53!

H61!

H71!

A15!

X! X! X!

X!

X!

X!X!X!

X! X! X!
X! X!

X!

X!

X!X!
X!

X!

X! X!

X! X!

X!

X!
X!

X!

X!

X!X!X!

X! X!

X! X! X! X!

X! X!X!

X!

X!

X!

SPECIALTY ENGINEERING SCOPING !
MATRIX	

REQUIREMENTS ANALYSIS SHEET!
(IN A COMPUTER DATABASE) !

H42! A11!

H42! A12!

H42! A13!

2.5!2.4!

H42! A21!

CONSTRAINT!

H42! X!X!

X!

 PID!

C!
O!
N!
S!
T!
R!
A!
I!
N!
T!
S!

PRODUCT ID (PID)!

X!

Functional UADF
Specialty Engineering Scoping Matrix

Specialty
Engineering

Requirements
Analysis	

PARA!

FROM!
TEMPLATE!

VERSION 14.0 122A-20 c JOG System Engineering

Functional UADF
Environmental Classes

SYSTEM
ENVIRONMENT

NATURAL
ENVIRONMENT

SELF-IINDUCED
ENVIRONMENT

HOSTILE
ENVIRONMENT

NON-
COOPERATIVE
ENVIRONMENT

SPACE

TIME

NATURAL
STRESSES

Q

Q3 Q4 Q1 Q5 Q2

Q11

Q12

Q13

COOPERATIVE
ENVIRONMENT

MASS AND
ENERGY

Q14

11	
121A1-	

VERSION 14.0 122A-21 c JOG System Engineering

Functional UADF
Generic External Interface MID

SYSTEM
ENVIRONMENT

SYSTEM

I22

I23

I24

I25

I1

I31

I32

I33

I34

I35

I3
6

I3
7

I3
8

I3
9

I3
A

I3
B

I3
C

I3

D

I3
E

I3
F

A

I21

Q

I2

I3

COOPERATVE
SYSTEMS

ENVIRONMENT
Q2

NON-COOPERATIVE
SYSTEMS

ENVIRONMENT
Q3

HOSTILE
SYSTEMS

ENVIRONMENT
Q4

SELF INDUCED
ENVIRONMENT

Q5

NATURAL
ENVIRONMENT

Q1

ELECTRO-
MAGNETIC

ENVIRONMNTAL
EFFECTS

VERSION 14.0 122A-22 c JOG System Engineering

Functional UADF
Three Tier Environmental Modeling

•  System level using integrated union of tailored
standards

•  End item level using three dimensional service
use profile

– Product entities
– Environmental stresses
– Process steps

•  Component level using end item zoning and
mapping components to zones

•  Possible need for an environmental sub system

12	
121A1-	

VERSION 14.0 122A-23 c JOG System Engineering

Functional UADF Process Flow Diagram
Needed as Part of the End Item Environmental Model

VERSION 14.0 122A-24 c JOG System Engineering

Systems Development Using the MSA-
PSARE UADF

Assign Product Entity MID (A) to Super Bubbles
Assign Interface MID (I) to Functional Relations (R)

13	
121A1-	

VERSION 14.0 122A-25 c JOG System Engineering

System Development Using the
UML-SysML UADF

VERSION 14.0 122A-26 c JOG System Engineering

No Matter the UADF Selected –
Employ Three-Dimensional
Requirements Traceability

Parent-Child
Source

Rationale

Derivation
From

Models

14	
121A1-	

VERSION 14.0 122A-27 c JOG System Engineering

Suggested Specification Section 3
Template

3. REQUIREMENTS 3.4 Specialty Engineering Requirements
3.1 Modeling 3.5 Environmental Requirements
3.2 Performance Requirements 3.5.1 Natural Environment
3.3 Interface Requirements 3.5.2 Cooperative Environment
3.3.1 Internal Interfaces (I1) 3.5.3 Non-Cooperative Environment
3.3.2 External Interfaces (I2) 3.5.4 Hostile Environment
3.3.3 Outside Interfaces (I3) 3.5.5 Self-Induced Environment

3. REQUIREMENTS 3.3.2.1 Natural Environment
3.1 Modeling 3.3.2.2 Cooperative Systems Environment
3.2 Performance Requirements 3.3.2.3 Non-Cooperative Environment
3.3 Interface Requirements 3.3.2.4 Hostile Environment
3.3.1 Internal Interfaces 3.3.2.5 Self-Induced Environment
3.3.2 External Interfaces 3.4 Specialty Engineering Requirements

TIMID ADVANCE

AGGRESSIVE ADVANCE

VERSION 14.0 122A-28 c JOG System Engineering

Unique Modeling Artifact Identification
To Support Lateral Traceability

MID MEANING PARA DEPT PREFERRED MODEL
---------- --- ------------ --------- ---------------------------------------
A Product Entity 3.1 331 Product Entity Block Diagram
F Functionality 3.1 331 Functional Flow Diagramming
H Specialty Engineering Domain 3.4 331 Specialty Engineering Scoping Matrix
H1 Engineering Domain 3.4.1 3XX -
H11 Aerodynamics 3.4.1.1 321 Modeling and Simulation
H12 Thermodynamics 3.4.1.2 322 Thermodynamic Analysis
H13 Structural Integrity 3.4.1.3 323 Modeling and Simulation
H14 Structural Statics 3.4.1.4 323 Modeling and Simulation
H15 Structural Dynamics 3.4.1.5 323 Modeling and Simulation
H2 Logistics Domain 3.4.2 341 Functional Flow Diagramming
I Physical Interface 3.3 331 N-Square Diagram
I1 Internal Interface 3.3.1 331 N-Square Diagram
I2 External Interface 3.3.2 331 N-Square Diagram
I3 Outside Interface 3.2.3 331 N-Square Diagram
J Functional Interface NA 331 N-Square Diagram
P Process - - Process Flow Diagram
Q Environment 3.5 331 Three Tier Model
Q1 Natural Environment 3.5.1 331 Standards
Q11 Space 3.5.1.1 331 Mission Analysis and Packaging
Q12 Time 3.5.1.2 331 Time Lines
Q13 Natural Stresses 3.5.1.3 331 Standards
Q2 Cooperative Environment 3.3.2 331 N-Square Diagram
Q3 Non-Cooperative Environment 3.3.3 331 Threat Analysis
Q4 Hostile Environment 3.3.4 331 Threat Analysis
Q5 Self-Induced Environment 3.3.5 331 No Specific Model
R Requirement 3 3XX -

15	
121A1-	

VERSION 14.0 122A-29 c JOG System Engineering

RAS-Complete In Table Form
MODEL ENTITY REQUIREMENT ENTITY PRODUCT ENTITY DOCUMENT ENTITY
MID MODEL ENTITY NAME RID REQUIREMENT PID ITEM NAME PARA TITLE
--------- -- ---------- -- --------- --------------------------------- ------------ ------------------------------
F47 Use System A Product System
F471 Deployment Ship Operations A Product System
F4711 Store Array Operationally RXR67 Storage Volume < 10 ISO Vans A1 Sensor Subsystem

H Specialty Engineering Disciplines A Product System
H11 Reliability REW34 Failure Rate < 10 x 10-6 A1 Sensor Subsystem 3.1.5 Reliability
H11 Reliability RG31R Failure Rate < 3 x 10-6 A11 Cable 3.1.5 Reliability
H11 Reliability RFYH4 Failure Rate < 5 x 10-6 A12 Sensor Element 3.1.5 Reliability
H11 Reliability RG8R4 Failure Rate < 2 x 10-6 A13 Pressure Vessel 3.1.5 Reliability
H12 Maintainability R6GHU Mean Time to Repair < 0.2 Hours A1 Sensor Subsystem 3.1.6 Maintainability
H1 2 Maintainability RU9R4 Mean Time to Repair < 0.4 Hours A11 Cable 3.1.6 Maintainability
H12 Maintainability RJ897 Mean Time to Repair < 0.2 Hours A12 Sensor Element 3.1.6 Maintainability
H12 Maintainability R9D7H Mean Time to Repair < 0.1 Hours A13 Pressure Vessel 3.1.6 Maintainability

I System Interface A Product System
I1 Internal Interface A Product System
I11 Sensor Subsystem Innerface A1
I181 Aggregate Signal Feed Source RE37H Aggregate Signal Feed Source A1 Sensor Subsystem

Impedance Impedance= 52 ohms + 2 ohms
I181 Aggregate Signal Feed Load RE37I Aggregate Signal Feed Load A4 Analysis and Reporting

Impedance Impedance= 52 ohms + 2 ohms Subsystem
I2 System External Interface A Product System

Q System Environment A Product System
QH Hostile Environment A Product System
QI Self-Induced Environmental A Product System

Stresses
QN Natural Environment A Product System
QN1 Temperature R6D74 -40 degrees F< Temperature A Product System

< +140 degrees F
QX Non-Cooperative Environmental A Product System

Stresses

VERSION 14.0 122A-30 c JOG System Engineering

The Requirements Analysis Sheet
(RAS)

•  Tabular RAS in a computer database from
which specifications may be printed is needed
on every program

•  Graphical RAS will be used in this presentation
to explain the content and loading the tabular
RAS from models

•  In this presentation the functional UADF
modeling artifacts are used in building the
graphical RAS but the idea is compatible with
the other two UADF as well

16	
121A1-	

VERSION 14.0 122A-31 c JOG System Engineering

Capture the Model and
Configuration Manage It

•  Systems Architecture Report (SAR) Recommended
•  For the Functional UADF the following appendices

are suggested
A Functional Flow Diagram
B Environment (Natural, Cooperative, Non-cooperative,

Hostile, Self-Induced)
C Product Entity Block Diagram
D Interface Diagram (Schematic Block or N-Square

Diagram)
E Specialty Engineering Scoping Matrix
F Process Diagram
G RAS or reference to its location

VERSION 14.0 122A-32 c JOG System Engineering

Graphical RAS – Performance
Requirements Plane

FUNCTION
AXIS (FID)

PRODUCT
ENTITY

AXIS (PID)

A

F

R4jU864 NEED

F4723

F473D

A24 A43

R7Y5j6S

RK4I76d
PERFORMANCE
REQUIREMENTS

PLANE

FUNCTION
AXIS (FID)

PRODUCT
ENTITY

AXIS (PID)

A

F

In the
Program
Beginning

Evolving

17	
121A1-	

VERSION 14.0 122A-33 c JOG System Engineering

Graphical RAS – Internal Interface Plane
A11

A12

A13

A14

A15

A16

A21

A22

A23

A24

A25

A26

A27

A28

A31

A32

A33

A34

A41

A42

A43

A44

VERSION 14.0 122A-34 c JOG System Engineering

Graphical RAS – Rotate Internal
Interface Plane

PRODUCT
ENTITY

AXIS

R6Ih743 INTERFACE
REQUIREMENT

PRODUCT ENTITY
A24

PRODUCT ENTITY
A43

INTERNAL
INTERFACE

PLANE

18	
121A1-	

VERSION 14.0 122A-35 c JOG System Engineering

Graphical RAS – Functional Plane
Coordinated With Interface Plane

FUNCTION
AXIS (FID)

PRODUCT
ENTITY

AXIS (PID)
A

F

F4723

F473D

A24

A43

R7Y5j6S

RK4I76d
PERFORMANCE
REQUIREMENTS

PLANE

INTERFACE
PLANE

R6Ih743

VERSION 14.0 122A-36 c JOG System Engineering

Graphical RAS – Specialty Engineering
Plane

PRODUCT
ENTITY

SPECIALTY
DOMAIN

SPECIALTY
ENGINEERING

REQUIREMENTS

A43

H2
R5hY746

19	
121A1-	

VERSION 14.0 122A-37 c JOG System Engineering

Graphical RAS
– Extended

Interface Plane

FUNCTION

PRODUCT
ENTITY

ENVIRONMENTAL
ENTITY

Q2

SPECAILTY
DOMAIN

Q3 Q4 Q1 Q5

INTERNAL
INTERFACE

EXTERNAL
INTERFACE

PERFORAMNCE
REQUIREMENTS

PLANE

SPECIALTY
ENGINEERING

REQUIREMENTS
PLANE

ENVIRONMENTAL
PLANE

VERSION 14.0 122A-38 c JOG System Engineering

Complete Graphical RAS

PRODUCT
ENTITY

SPECIALTY
ENGINEERING

PLANE

PERFORAMNCE
REQUIREMENTS

PLANE

FUNCTION

SPECIALTY
ENGINEERING

DOMAIN

ENVIRONMENTAL
PLANE

Q
1

Q2 Q3 Q4 Q5

H2
R5hY746

A43

INTERFACE
PLANE

R3Hy5e6

RxY45K6 F4723

R6Ih743

A24 Q253

F532

INTERNAL

EXTERNAL

ENVIRONMENTAL
ENTITY

20	
121A1-	

VERSION 14.0 122A-39 c JOG System Engineering

Model - RAS - Specification
Sequence

Published
Specifications	
Model the Problem Space

Annotating Artifacts With MID	

MID	
 REQUIREMENTS	
 ENTITY	
 SPECIFICATION	

List Artifacts in RAS in
MID Alphanumeric Order	

Allocate
Requirements	

Derive
Requirements	
 Employ Universal

Format For Entity
Specification	

RAS	
 And on to
Verification	
Model	

MANAGE THE WHOLE WELL

VERSION 14.0 122A-40 c JOG System Engineering

Prescription For the Enterprise That
Has Not Yet Reached Perfection

1. Adopt a UADF and insist that all persons doing architecture development and
requirements analysis work use it.

2. Adopt a way of uniquely identifying all modeling artifacts from which requirements
may be derived.

3. Adopt a means by which personnel may capture modeling and specification content
such that they may be configuration managed. There are not any computer tools
known to the author that could capture all of the modeling and documentation
features covered in the paper but one could build a simple text-oriented database
linked to hand drawn or computer application graphics modeling artifacts.

4. Adopt a means for personnel to accomplish modeling work and retention of masters
in the formal system baseline documentation.

5. Adopt a set of specification templates coordinated with modeling.
6. Establish a policy such as Table 1 of the supporting text suggests that clearly assigns

responsibility for all specification content to personnel from specific functional
departments on all programs.

7. Prepare a written document telling how this work is to be done on programs.
8. Train all personnel who have a role in this work in the appropriate parts of it assigned

to their functional department.
9. Establish a quality assurance means that will assure that the work is accomplished in

accordance with the prepared instructions and contractual requirements on programs.

	122_COVER
	122_TOC
	122_TEXT
	122A_EXHIBIT-A_COVER
	122A

