
S E C O N D  E D I T I O N

THE ART OF
SYSTEMS

ARCHITECTING

2000 CRC Press LLC



Mark W. Maier
Aerospace Corporation

Chantilly, Virginia

Eberhardt Rechtin
University of Southern California

Los Angeles, California

S E C O N D  E D I T I O N

Boca Raton   London   New York   Washington, D.C.
CRC Press

THE ART OF
SYSTEMS

ARCHITECTING

2000 CRC Press LLC



This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

© 2000 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0440-7

Library of Congress Card Number 00-03948
Printed in the United States of America  1  2  3  4  5  6  7  8  9  0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

The art of systems architecting / edited by Mark W. Maier, Eberhardt Rechtin.—2nd ed.
p.   cm.

Pre. ed. entered under Rechtin
Includes bibliographical references and index.
ISBN 0-8493-0440-7 (alk. paper)
1. Systems Engineering. This book is no longer in a series. I Maier, Mark. 
Rechtin, Eberhardt. III. Rechtin, Eberhardt. Art of systems architecting. 
TA168 .R368 2000
620′.001′171—dc21 00-03948

  CIP

2000 CRC Press LLC



Dedications

To Leigh, Stuart, and Charlie, my anchors and inspiration.

Mark Maier

To Deedee, for whom life itself is an art.

Eberhardt Rechtin

2000 CRC Press LLC



Preface

The continuing development of systems architecting

Architecting, the planning and building of structures,
is as old as human societies — and as modern as the
exploration of the solar system.

So began this book’s 1991 predecessor.* The earlier work was based on the
premise that architectural methods, similar to those formulated centuries
before in civil works, were being used, albeit unknowingly, to create and
build complex aerospace, electronic, software, command, control, and man-
ufacturing systems. If so, then other civil works architectural tools and ideas
— such as qualitative reasoning and the relationships between client, architect
and builder — should be found even more valuable in today’s more recent
engineering fields. Five years later, at the time of the first edition of this book,
judging from several hundred retrospective studies at the University of
Southern California of dozens of post-World War II systems, the original
premise has been validated. With another five years of perspective the obser-
vations only hold more strongly. Today’s systems architecting is indeed driv-
en by, and serves, much the same purposes as civil architecture — to create
and build systems too complex to be treated by engineering analysis alone. 

Of great importance for the future, the new fields have been creating
architectural concepts and tools of their own and at an accelerating rate. This
book includes a number of the more broadly applicable ones, among them
heuristic tools, progressive design, intersecting waterfalls, feedback archi-
tectures, spiral-to-circle software acquisition, technological innovation, and
the rules of the political process as they affect system design. 

Arguably, these developments could, even should, have occurred sooner
in this modern world of systems. Why now?

* Rechtin, E., Systems Architecting, Creating & Building Complex Systems, Prentice-Hall, Engle-
wood Cliffs, NJ, 1991. Hereafter called Rechtin, 1991.
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Architecting in the systems world
A strong motivation for expanding the architecting process into new fields
has been the retrospective observation that success or failure of today’s
widely publicized systems often seems preordained; that is, traceable to their
beginnings. It is not a new realization. It was just as apparent to the ancient
Egyptians, Greeks, and Romans who originated classical architecting in re-
sponse to it. The difference between their times and now is in the extraor-
dinary complexity and technological capability of what could then and now
be built.

Today’s architecting must handle systems of types unknown until very
recently; for example, systems that are very high quality, real-time, closed-
loop, reconfigurable, interactive, software-intensive, and, for all practical
purposes, autonomous. New domains like personal computers, intersatellite
networks, health services, and joint service command and control are calling
for new architectures — and for architects specializing in those domains.
Their needs and lessons learned are in turn leading to new architecting
concepts and tools and to the acknowledgment of a new formalism, and
evolving profession, called systems architecting; a combination of the prin-
ciples and concepts of both systems and of architecting.

The reasons behind the general acknowledgment of architecting in the
new systems world are traceable to that remarkable period immediately after
end of the Cold War in the mid-1980s. Abruptly, by historical standards, a
50-year period of continuity ended. During the same period, there was a
dramatic upsurge in the use of smart, real-time systems, both civilian and
military, which required much more than straightforward refinements of
established system forms. Long-range management strategies and design
rules, based on years of continuity, came under challenge. It is now apparent
that the new era of global transportation, global communications, global
competition, and global turmoil is not only different in type and direction,
it is unique technologically and politically. It is a time of restructuring and
invention, of architecting new products and processes, and of new ways of
thinking about how systems are created and built.

Long-standing assumptions and methods are under challenge. For ex-
ample, for many engineers, architectures were a given; automobiles, air-
planes, and even spacecraft had had the same architectural forms for de-
cades. What need was there for architecting? Global competition soon
provided an answer. Architecturally different systems were capturing mar-
kets. Consumer product lines and defense systems are well-reported exam-
ples. Other questions include: how can software architectures be created that
evolve as fast as their supporting technologies? How deeply should a sys-
tems architect go into the details of all the system’s subsystems? What is the
distinction between architecting and engineering?
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Distinguishing between architecting and engineering
Because it is the most asked by engineers in the new fields, the first issue to
address is the distinction between architecting and engineering in general;
that is, regardless of engineering discipline. Although civil engineers and
civil architects, even after centuries of debate, have not answered that ques-
tion in the abstract, they have in practice. Generally speaking, engineering
deals almost entirely with measurables using analytic tools derived from
mathematics and the hard sciences; that is, engineering is a deductive pro-
cess. Architecting deals largely with unmeasurables using nonquantitative
tools and guidelines based on practical lessons learned; that is, architecting
is an inductive process. At a more detailed level, engineering is concerned
with quantifiable costs, architecting with qualitative worth. Engineering
aims for technical optimization, architecting for client satisfaction. Engineer-
ing is more of a science, architecting more of an art.

In brief, the practical distinction between engineering and architecting
is in the problems faced and the tools used to tackle them. This same dis-
tinction appears to apply whether the branch involved is civil, mechanical,
chemical, electrical, electronic, aerospace, software, or systems.* Both archi-
tecting and engineering can be found in every one. Architecting and engi-
neering are roles which are distinguished by their characteristics. They rep-
resent two edges of a continuum of systems practice. Individual engineers
often fill roles across the continuum at various points in their careers or on
different systems. The characteristics of the roles, and a suggestion for an
intermediate role, are shown in Table 1.1.

As the table indicates, architecting is characterized by dealing with ill-
structured situations, situations where neither goals nor means are known
with much certainty. In systems engineering terms, the requirements for the
system have not been stated more than vaguely, and the architect cannot
appeal to the client for a resolution as the client has engaged the architect
precisely to assist and advise in such a resolution. The architect engages in
a joint exploration of requirements and design, in contrast to the classic
engineering approach of seeking an optimal design solution to a clearly
defined set of objectives.

Because the situation is ill-structured, the goal cannot be optimization.
The architect seeks satisfactory and feasible problem-solution pairs. Good
architecture and good engineering are both the products of art and science,
and a mixture of analysis and heuristics. However, the weight will fall on
heuristics and “art” during architecting.

One way to clearly see the distinction is in the approach to interfaces
and system integrity. When a complex system is built (say one involving
10,000 person-years of effort) only absolute consistency and completeness
of interface descriptions and disciplined methodology and process can suf-
fice. When a system is physically assembled it matters little whether an

* The systems branch, possibly new to some readers, is described in Rechtin, 1991, and in
Chapter 1 of this book.
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interface is high- or low-tech, if it is not exactly correct the system does not
work. In contrast, during architecting it is necessary only to identify the
interfaces that cannot work, the misfits. Misfits must be eliminated during
architecting, and then interfaces should be resolved in order of criticality
and risk as development proceeds into engineering.

One important point is that the table represents management in the
classical paradigm of how architecting is done, not necessarily how it actu-
ally is done. Classically, architecting is performed by a third party working
for the client. In practice, the situation is more complex as the architecture
might be done by the builder before a client is found, might be mixed into
a competitive procurement, or might be done by the client. These variations
are taken up in chapters to come.

Systems architecting is the subject of this book, and the art of it in
particular, because, being the most interdisciplinary, its tools can be most
easily applied in the other branches. From the author’s experience, systems
architecting quickly and naturally abstracts and generalizes lessons learned
elsewhere, not only for itself but also for transfer and specialization in still
other branches. A good example is the system guideline (or heuristic), ab-
stracted from examples in all branches, of Simplify. Simplify. Simplify. It
will appear several times in this text.

It is important in understanding the subject of this book to clarify certain
expressions. The word “architecture” in the context of civil works can mean
a structure, a process, or a profession; in this text it refers only to the structure.
The word “architecting” refers only to the process. Architecting is an invent-
ed word to describe how architectures are created much as engineering
describes how “engines” and other artifacts are created. In another, subtler,

Table 1.1 The Architecting-Engineering Continuum

Characteristic Architecting A & E Engineering

Situation/goals Ill-structured Constrained Understood
Satisfaction Compliance Optimization

Methods Heuristics ↔ Equations

Synthesis ↔ Analysis

Art and science Art and Science Science and Art
Interfaces Focus on “mis-

fits”
Critical Completeness

System integrity 
maintained through

“Single mind” Clear objectives Disciplined 
methodology
and process

Management issues Working for Client Working with 
Client

Working for 
Builder

Conceptualization
and certification

Whole waterfall Meeting project 
requirements

Confidentiality Conflict of 
interest

Profit vs. cost
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distinction from conventional usage, an “architect” is meant here to be an
individual engaged in the process of achitecting, regardless of domain, job
title, or employer; by definition and practice both. From time to time an
architect may perform engineering and an engineer may perform architect-
ing — whatever it takes to get the job done. 

Clearly, both processes can and do involve elements of the other. Archi-
tecting can and does require top-level quantitative analysis to determine
feasibility, and quantitative measures to certify readiness for use. Engineer-
ing can and occasionally does require the creation of architecturally different
alternatives to resolve otherwise intractable design problems. For complex
systems, both processes are essential.* In practice, it is rarely necessary to
draw a sharp line between them.

Criteria for mature and effective systems architecting
An increasingly important need of project managers and clients is for criteria
to judge the maturity and effectiveness of systems architecting in their
projects — criteria analogous to those developed for software development
by Carnegie Mellon’s Software Engineering Institute. Based upon experience
to date, criteria for systems architecting appear to be, in rough order of
attainment:

• A recognition by clients and others of the need to architect complex
systems

• An accepted discipline to perform that function; in particular, the
existence of architectural methods, standards, and organizations

• A recognized separation of value judgments and technical decisions
between client, architect, and builder

• A recognition that architecture is an art as well as a science; in par-
ticular, the development and use of nonanalytic as well as analytic
techniques

• The effective utilization of an educated professional cadre; that is, of
masters-level, if not doctorate-level, individuals and teams engaged
in the process of systems-level architecting.

By those criteria, systems architecting is in its adolescence, a time of
challenge, opportunity, and controversy. History and the needs of global
competition would seem to indicate adulthood is close at hand.

* For further elaboration on the related questions of the role of the architect, see Rechtin, 1991,
pp. 11–14; on the architect’s tools, Parts One and Three of this book; and on architecting as a
profession, Part Four of this book and Systems Engineering, the Journal of the International
Council on Systems Engineering.
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The architecture of this book
The first priority of this book has been to restate and extend into the future
the retrospective architecting paradigm of Rechtin, 1991.* An essential part
of both retrospective and extended paradigms is the recognition that systems
architecting is part art and part science. Part One of this book further devel-
ops the art and extends the central role of heuristics. Part Two introduces
five important domains that both need and contribute to the understanding
of that art. Part Three helps bridge the space between the science and the
art of architecting. In particular, it develops the core architecting process of
modeling and representation by and for software. Part Four concentrates on
architecting as a profession: the political process and its part in system
design, and the professionalization of the field through education, research,
and peer-reviewed journals.

The architecture of Part Two deserves an explanation. Without one, the
reader may inadvertently skip some of the domains — builder-architected
systems, manufacturing systems, social systems, software systems, and col-
laborative systems — because they are outside the reader’s immediate field
of interest. These chapters, instead, recognize the diverse origins of heuris-
tics, illustrating and exploiting them. Heuristics often first surface in a spe-
cialized domain where they address an especially prominent problem. Then,
by abstraction or analogy, they are carried over to others and become generic.
Such is certainly the case in the selected domains. In these chapters the usual
format of stating a heuristic and then illustrating it in several domains is
reversed. Instead, it is stated, but in generic terms, in the domain where it
is most apparent. Readers are encouraged to scan all the chapters of Part
Two. The chapters may even suggest domains, other than the reader’s, where
the reader’s experience can be valuable in these times of vocational change.
References are provided for further exploration. For professionals already
in one of the domains, the description of each is from an architectural per-
spective, looking for those essentials that yield generic heuristics and pro-
viding, in return, other generic ones that might help better understand those
essentials. In any case, the chapters most emphatically are not intended to
advise specialists about their specialties.

Architecting is inherently a multidimensional subject, difficult to de-
scribe in the linear, word-follows-word format of a book. Consequently, it is
occasionally necessary to repeat the same concept in several places, internally
and between books. A good example is the concept of systems. Architecting

* This second book is an extension of Rechtin, 1991, not a replacement for it. However, this
book reviews enough of the fundamentals that it can stand on its own. If some subjects, such
as examples of specific heuristics, seem inadequately treated, the reader can probe further in
the earlier work. There are also a number of areas covered there that are not covered here,
including the challenges of ultraquality, purposeful opposition, economics and public policy;
biological architectures and intelligent behavior; and assessing architecting and architectures.
A third book, “Systems Architecting of Organizations, Why Eagles Can’t Swim,” E. Rechtin, CRC
Press, Boca Raton, FL, 1999, introduces a part of systems architecting related to, but different
from, the first two.
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can also be organized around several different themes or threads. Rechtin,
1991, was organized around the well-known waterfall model of system
procurement. As such, its applicability to software development was limited.
This book, more general, is organized by fundamentals, tools, tasks, do-
mains, models, and vocation. Readers are encouraged to choose their own
personal theme as they go along. It will help tie systems architecting to their
own needs. 

Exercises are interspersed in the text, designed for self-test of under-
standing and critiquing the material just presented. If the reader disagrees,
then the disagreement should be countered with examples and lessons
learned — the basic way that mathematically unprovable statements are
accepted or denied. Most of the exercises are thought problems, with no
correct answers. Read them, and if the response is intuitively obvious, charge
straight ahead. Otherwise, pause and reflect a bit. A useful insight may have
been missed. Other exercises are intended to provide opportunities for long-
term study and further exploration of the subject. That is, they are roughly
the equivalent of a masters thesis.

Notes and references are organized by chapter. Heuristics, by tradition,
are bold faced when they appear alone, with an appended list of them
completing the text.

Changes since the first edition
Since the publication of the first edition it has become evident that some
sections of the book could be clearer, and new subjects have come to be
important in the discussion of architecting. The authors have benefited from
extensive feedback from working systems architects through seminars and
other contacts. Where appropriate, that feedback has been incorporated into
the book in the form of clearer explanations, better examples, and corrections
to misunderstandings.

In several areas we have added new material. Two new chapters cover
collaborative systems (a.k.a. systems-of-systems) and architecture descrip-
tion frameworks. The tremendous growth of the Internet and World Wide
Web have led to greater appreciation for truly collaborative systems. A
collaborative system is one in which the components voluntarily operate
jointly to form a greater whole. The degree of independence of operation
and management can subclassify systems of this overall type, and they
appear to have methods and heuristic applications specific to this class.

The second new chapter discusses architecture description frameworks.
As the importance of architectures has become more broadly accepted, stan-
dards work has begun to codify good practices. A major area for such
standards work is architecture description, the equivalent of blueprint stan-
dards. Most of the emerging standards are roughly similar in intellectual
approach, but they use distinctly different terminology and make quite dif-
ferent statements about what features are important.
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In addition, the chapters on software and modeling have been substan-
tially reworked, and the chapter on professionalization has been updated.
The pace of work in software architecture has been very fast, and the chapter
updated to reflect this. Also since the publication of this book, new university
educational programs have begun that incorporate system architecture as
an important element.

The intended readership for this book
This book is written for present and future systems architects, for experi-
enced engineers interested in expanding their expertise beyond a single field,
and for thoughtful individuals concerned with creating, building, or using
complex systems.

From experience with its predecessor, the book can be used as a reference
work for graduate studies, for senior capstone courses in engineering and
architecture, for executive training programs, and for the further education
of consultants, systems acquisition and integration specialists, and as back-
ground for legislative staffs. It is a basic text for a Masters of Science degree
in Systems Architecture and Engineering at the University of Southern Cal-
ifornia.
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Part one 

Introduction — the art
of architecting

A brief review of classical architecting methods

Architecting: the art and science of designing and
building systems.1

The four most important methodologies in the process of architecting are
characterized as normative, rational, participative, and heuristic (Table 1.1).2
As might be expected, like architecting itself, they contain both science and
art. The science is largely contained in the first two, normative and rational,
and the art in the last two, participative and heuristic.

The normative technique is solution-based; it prescribes architecture as
it “should be;” that is, as given in handbooks, civil codes, and in pronounce-
ments by acknowledged masters. Follow it and the result will be successful
by definition. 

Limitations of the normative method — such as responding to major
changes in needs, preferences, or circumstances — lead to the rational
method: scientific, and mathematical principles to be followed in arriving at
a solution to a stated problem. It is method- or rule-based. Both the normative
and rational methods are analytic, deductive, experiment-based, easily certi-
fied, well understood, and widely taught in academia and industry. Moreover,

Table 1.1 Four Architecting Methodologies

Normative (solution-based)
Examples: building codes and communications standards

Rational (method-based)
Examples: systems analysis and engineering

Participative (stakeholder-based)
Examples: concurrent engineering and brainstorming

Heuristic (lessons learned)
Examples: Simplify. Simplify. Simplify. and SCOPE.

2000 CRC Press LLC



the best normative rules are discovered through engineering science (think
of modern building codes), truly a formidable set of positives. 

However, because science-based methods are absolutely necessary parts
of architecting, they are not the focus of this book. They are already well
treated in a number of architectural and engineering texts. Equally necessary,
and the focus of this part of the book, is the art, or practice, needed to
complement the science for highly complex systems.

In contrast with science-based methodologies, the art or practice of archi-
tecting — like the practice of medicine, law, and business — is nonanalytic,
inductive, difficult to certify, less understood, and, at least until recently, is
seldom taught formally in either academia or industry. It is a process of
insights, vision, intuitions, judgment calls, and even “taste.”3 It is key to
creating truly new types of systems for new and often unprecedented appli-
cations. Here are some of the reasons why it is key. 

For unprecedented systems, past data is of limited use. For others, analysis
can be overwhelmed by too many unknowns, too many stakeholders, too
many possibilities, and too little time for data gathering and analysis to be
practical. To cap it off, many of the most important factors are not measurable.
Perceptions of worth, safety, affordability, political acceptance, environmental
impact, public health, and even national security provide no realistic basis for
numerical analyses — even if they weren't highly variable and uncertain. Yet,
if the system is to be successful, these perceptions must be accommodated
from the first, top-level, conceptual model down through its derivatives.

The art of architecting, therefore, complements its science where science
is weakest: in dealing with immeasurables, in reducing past experience and
wisdom to practice, in conceptualization, in inspirationally putting disparate
things together, in providing “sanity checks,” and in warning of likely but
unprovable trouble ahead. Terms like reasonable assumptions, guidelines,
indicators, elegant design, and beautiful performance are not out of place in
this art; nor are lemon, disaster, snafu, or loser. These are hardly quantifiable,
but as real in impact as any science.

The participative methodology recognizes the complexities created by
multiple stakeholders. Its objective is consensus. As a notable example,
designers and manufacturers need to agree on a multiplicity of details if an
end product is to be manufactured easily, quickly, and profitably. In simple
but common cases, only the client, architect, and contractor have to be in
agreement; but as systems become more complex, new and different partic-
ipants have to agree as well.

Concurrent engineering, a recurrently popular acquisition method, was
developed to help achieve consensus among many participants. Its greatest
value, and its greatest contentions, are for systems in which widespread
cooperation is essential for acceptance and success; for example, systems
which directly impact on the survival of individuals or institutions. Its well-
known weaknesses are undisciplined design by committee, diversionary
brainstorming, the closed minds of “group think,” and members without
power to make decisions but with the unbridled right to second guess.
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Arguably, the greatest mistake that can be made in concurrent engineering
is to attempt to quantify it. It is not a science. It is a very human art.

The heuristics methodology is based on “common sense,” that is, on
what is sensible in a given context. Contextual sense comes from collective
experience stated in as simple and concise a manner as possible. These
statements are called heuristics, the subject of Chapter 2, and are of special
importance to architecting because they provide guides through the rocks
and shoals of intractable, “wicked” system problems. Simplify is the first
and probably most important of them. They exist in the hundreds if not
thousands in architecting and engineering, yet they are some of the most
practical and pragmatic tools in the architect’s kit of tools.

Different methods for different phases of architecting

The nature of classical architecting changes as the project moves from phase
to phase. In the earliest stages of a project it is a structuring of an unstructured
mix of dreams, hopes, needs, and technical possibilities when what is most
needed has been called an inspired synthesizing of feasible technologies. It
is a time for the art of architecting. Later on, architecting becomes an inte-
gration of, and mediation among, competing subsystems and interests — a
time for rational and normative methodology. And, finally, there comes
certification to all that the system is suitable for use, when it may take all
the art and science to that point to declare the system as built is complete
and ready for use. 

Not surprisingly, architecting is often individualistic, and the end results
reflect it. As Frederick P. Brooks put it in 19824 and Robert Spinrad stated in
1987,5 the greatest architectures are the product of a single mind — or of a
very small, carefully structured team. To which should be added, in all
fairness: a responsible and patient client, a dedicated builder, and talented
designers and engineers.

Notes and references
1. Webster’s II New Riverside University Dictionary, Riverside Publishing, Boston,

1984. As adapted for systems by substitution of “building systems” for “erect-
ing buildings.”

2. For a full discussion of these methods, see Lang, J., Creating Architectural
Theory, The Role of the Behavioral Sciences in Environmental Design, Van Nostrand
Reinhold Company, New York, 1987; and Rowe, P. G., Design Thinking, MIT
Press, Cambridge, MA, 1987. They are adapted for systems architecting in
Rechtin, E., Systems Architecting, Creating & Building Complex Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1991, 14.

3. Spinrad, R. J., In a lecture to the University of Southern California, 1988.
4. Brooks, F. P., The Mythical Man-Month, Essays on Software Engineering, Addison-

Wesley, Reading, MA, 1983.
5. Spinrad, R. J., at a Systems Architecting lecture at the University of Southern

California, fall 1987.
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chapter one

Extending the 
architecture paradigm

Introduction: the classical architecting paradigm
The recorded history of classical architecting, the process of creating archi-
tectures, began in Egypt more than 4000 years ago with the pyramids, the
complexity of which had been overwhelming designers and builders alike.
This complexity had at its roots the phenomenon that as systems became
increasingly more ambitious, the number of interrelationships among the
elements increased far faster than the number of elements themselves. Pyr-
amids were no longer simple burial sites; they had to be demonstrations of
political and religious power, secure repositories of god-like rulers and their
wealth, and impressive engineering accomplishments. Each demand, of
itself, would require major resources. When taken together, they generated
new levels of technical, financial, political, and social complications. Com-
plex interrelationships among the combined elements were well beyond
what the engineers’ and builders’ tools could handle.

From that lack of tools for civil works came classical civil works archi-
tecture. Millennia later, technological advances in shipbuilding created the
new and complementary fields of marine engineering and naval architecture.
In this century, rapid advances in aerodynamics, chemistry, materials, elec-
trical energy, communications, surveillance, information processing, and
software have resulted in systems whose complexity is again overwhelming
past methods and paradigms. One of those is the classical architecting par-
adigm. 

Responding to complexity

Complex: composed of interconnected or interwoven
parts.1

© 2000 by CRC Press LLC



System: a set of different elements so connected or
related as to perform a unique function not perform-
able by the elements alone.2

It is generally agreed that increasing complexity* is at the heart of the most
difficult problems facing today’s systems architecting and engineering.
When architects and builders are asked to explain cost overruns and sched-
ule delays, by far the most common, and quite valid, explanation is that the
system is much more complex than originally thought. The greater the com-
plexity, the greater the difficulty. It is important, therefore, to understand
what is meant by system complexity if architectural progress is to be made
in dealing with it.

The definitions of complexity and systems given at the start of this
section are remarkably alike. Both speak to interrelationships (interconnec-
tions, interfaces, etc.) among parts or elements. As might be expected, the
more elements and interconnections, the more complex the architecture and
the more difficult the system-level problems.

Less apparent is that qualitatively different problem-solving techniques
are required at high levels of complexity than at low ones. Purely analytical
techniques, powerful for the lower levels, can be overwhelmed at the higher
ones. At higher levels, architecting methods, experience-based heuristics,
abstraction, and integrated modeling must be called into play.3 The basic
idea behind all of these techniques is to simplify problem solving by con-
centrating on its essentials. Consolidate and simplify the objectives. Stay
within guidelines. Put to one side minor issues likely to be resolved by the
resolution of major ones. Discard the nonessentials. Model (abstract) the
system at as high a level as possible, then progressively reduce the level of
abstraction. In short, Simplify!

It is important in reading about responses to complexity to understand
that they apply throughout system development, not just to the conceptual
phase. The concept that a complex system can be progressively partitioned
into smaller and simpler units — and hence into simpler problems — omits
an inherent characteristic of complexity, the interrelationships among the
units. As a point of fact, poor aggregation and partitioning during develop-
ment can increase complexity, a phenomenon all too apparent in the organi-
zation of work breakdown structures.

This primacy of complexity in system design helps explain why a single
“optimum” seldom if ever exists for such systems. There are just too many
variables. There are too many stakeholders and too many conflicting inter-
ests. No practical way may exist for obtaining information critical in making
a “best” choice among quite different alternatives.

* A system need not be large or costly to be complex. The manufacture of a single mechanical
part can require over 100 interrelated steps. A $10 microchip can contain thousands, even
millions, of interconnected active elements.
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The high rate of advances in the computer and information sciences

Unprecedented rates of advance in the computer and information sciences
have further exacerbated an already complex picture. The advent of smart,
software-intensive systems is producing a true paradigm shift in system
design. Software, long treated as the glue that tied hardware elements
together, is becoming the center of system design and operation. We see it
in personal computers. The precipitous drop in computer hardware costs
has generated a major design shift, from “keep the computer busy” to “keep
the user busy.” We see it in automobiles, where microchips increasingly
determine the performance, quality, cost, and feel of cars and trucks. 

We see the paradigm shift in the design of spacecraft and personal
computers where complete character changes can be made in minutes. In
effect, such software-intensive systems “change their minds” on demand. It
is no longer a matter of debate whether machines have “intelligence;” the
only real questions are of what kinds of intelligence and how best to use
each one. And, because its software largely determines what and how the
user perceives the system as a whole, its design will soon control and precede
hardware design much as hardware design controls software today. This
shift from “hardware first” to “software first” will force major changes on
when and how system elements are designed, and who, with what expertise,
will design the system as a whole. The impact on the value of systems to
the user has been and will continue to be enormous.

One measure of this phenomenon is the proportion of development
effort devoted to hardware and software for various classes of product.
Anecdotal reports from a variety of firms in telecommunications and con-
sumer electronics commonly show a reversal of the proportion from 70%
hardware and 30% software to 30% hardware and 70% software. This shift
has created major challenges and destroyed some previously successful com-
panies. When the cost of software development dominates, development
systems should be organized to simplify software development. But good
software architectures and good hardware architectures are often quite dif-
ferent. Good architectures for complex software usually emphasize layered
structures that cross many physically distinct hardware entities. Good soft-
ware architectures also emphasize information hiding and close parallels
between implementation constructs and domain concepts at the upper lay-
ers. These are in contrast to the emphasis on hierarchical decomposition,
physical locality of communication, and interface transparency in good hard-
ware architectures. Organizations find trouble when their workload moves
from hardware- to software-dominated but their management and develop-
ment skills no longer “fit” the systems they should support.

Particularly susceptible to these changes are systems that depend upon
electronics, and information systems and that do not enjoy the formal part-
nership with architecting that structural engineering has long enjoyed. This
book is an effort to remedy that lack by showing how the historical principles
of classical architecting can be extended to modern systems architecting.
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The foundations of modern systems architecting
Although the day-to-day practice may differ significantly,4 the foundations
of modern systems architecting are much the same across many technical
disciplines. Generally speaking, they are a systems approach, a purpose
orientation, a modeling methodology, ultraquality, certification, and insight.5
Each will be described in turn.

A systems approach

A systems approach is one that focuses on the system as a whole, particularly
when making value judgments (what is required) and design decisions (what
is feasible). At the most fundamental level, systems are collections of different
things which together produce results unachievable by the elements alone. For
example, only when all elements are connected and working together do
automobiles produce transportation, human organs produce life, and space-
crafts produce information. These system-produced results, or so-called
“system functions,” derive almost solely from the interrelationships among
the elements, a fact that largely determines the technical role and principal
responsibilities of the systems architect.

Systems are interesting because they achieve results, and achieving those
results requires different things to interact. Based on experience with systems
over the last decade, it is difficult to underestimate the importance of this
specific definition of systems to what follows, literally, on a word-by-word
basis. Taking a systems approach means paying close attention to results or
the reasons we build a system. Architecture must be grounded in the cli-
ent’s/user’s/customer’s purpose. Architecture is not just about the structure
of components.

It is the responsibility of the architect to know and concentrate on the
critical few details and interfaces that really matter and not to become over-
loaded with the rest. It is a responsibility that is important not only for the
architect personally, but for effective relationships with the client and builder.
To the extent that the architect must be concerned with component design
and construction, it is with those specific details that critically affect the
system as a whole. 

For example, a loaded question often posed by builders, project manag-
ers, and architecting students is, “How deeply should the architect delve
into each discipline and each subsystem?” A graphic answer to that question
is shown in Figure 1.1, exactly as sketched by Bob Spinrad in a 1987 lecture
at the University of Southern California. The vertical axis is a relative mea-
sure of how deep into a discipline or subsystem an architect must delve to
understand its consequences to the system as a whole. The horizontal axis
lists the disciplines, such as electronics or stress mechanics, and/or the
subsystems, such as computers or propulsion systems. Depending upon the
specific system under consideration, a great deal of , or a very little under-
standing may be necessary. 

© 2000 by CRC Press LLC



This leads to the question: “How can the architect possibly know before
there is a detailed system design, much less before a system test, what details
of what subsystem are critical?” A quick answer is: only through experience,
through encouraging open dialog with subsystem specialists, and by being
a quick, selective, tactful, and effective student of the system and its needs.
Consequently, and perhaps more than any other specialization, architecting
is a continuing, day-to-day learning process. No two systems are exactly
alike. Some will be unprecedented, never built before.

Exercise: Put yourself in the position of an architect
asked to help a client build a system of a new type
whose general nature you understand (a house, a
spacecraft, a nuclear power plant, or a system in your
own field) but which must considerably outperform
an earlier version by a competitor. What do you expect
to be the critical elements and details and in what
disciplines or subsystems? What elements do you
think you can safely leave to others? What do you need
to learn the most about? Reminder: You will still be
expected to be responsible for all aspects of the system
design.

Critical details aside, the architect’s greatest concerns and leverage are
still, and should be, with the systems’ connections and interfaces because:
(1) they distinguish a system from its components; (2) their addition pro-
duces unique system-level functions, a primary interest of the systems archi-
tect; (3) subsystem specialists are likely to concentrate most on the core and

Figure 1.1
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least on the periphery of their subsystems, viewing the latter as (generally
welcomed) external constraints on their internal design. Their concern for
the system as a whole is understandably less than that of the systems archi-
tect — if not managed well, the system functions can be in jeopardy.

A purpose orientation

Systems architecting is a process driven by a client’s purpose or purposes.
A president wants to meet an international challenge by safely sending
astronauts to the moon and back. Military services need nearly undetectable
strike aircraft. Cities call for pollutant-free transportation. 

Clearly, if a system is to succeed, it must satisfy a useful purpose at an
affordable cost for an acceptable period of time. Note the explicit value
judgments in these criteria: a useful purpose, an affordable cost, and an accept-
able period of time. Each and every one is the client’s prerogative and respon-
sibility, emphasizing the criticality of client participation in all phases of
system acquisition. Of the three criteria, satisfying a useful purpose is pre-
dominant. Without it being satisfied, all others are irrelevant. Architecting
therefore begins with, and is responsible for maintaining, the integrity of the
system’s utility or purpose. 

For example, the Apollo manned mission to the moon and back had a
clear purpose, an agreed cost, and a no-later-than date. It delivered on all
three. Those requirements, kept up front in every design decision, deter-
mined the mission profile of using an orbiter around the moon and not an
earth-orbiting space station, and on developing electronics for a lunar orbit
rendezvous instead of developing an outsize propulsion system for a direct
approach to the lunar surface. 

As another example, NASA headquarters, on request, gave the
NASA/JPL Deep Space Network’s huge ground antennas a clear set of
priorities: first performance, then cost, then schedule, even though the pri-
mary missions they supported were locked into the absolute timing of plan-
etary arrivals. As a result, the first planetary communication systems were
designed with an alternate mode of operation in case the antennas were not
yet ready. As it turned out, and as a direct result of the NASA risk-taking
decision, the antennas were carefully designed, not rushed, and not only
satisfied all criteria for the first launch, but for all launches for the next 40
years or so.

The Douglas Aircraft DC-3, though originally thought by the airline
(now TWA) to require three engines, was rethought by the client and the
designers in terms of its underlying purpose — to make a profit on providing
affordable long-distance air travel over the Rocky and Sierra Nevada moun-
tains for paying commercial passengers. The result was the two-engine DC-
3, the plane that introduced global air travel to the world.

In contrast, the promises of the shuttle as an economically viable trans-
porter to low earth orbit were far from met, although in fact the shuttle did
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turn out to be a remarkably reliable and unique launch vehicle for selected
missions.

As of this date, the presumed purposes of the space station do not appear
to be affordable and a change of purpose may be needed. The unacceptable
cost/benefit ratios of the supersonic transport, the space-based ballistic mis-
sile defense system, and the superconducting supercollider terminated all
these projects before their completion.

Curiously, the end use of a system is not always what was originally
proposed as its purpose. The F-16 fighter aircraft was designed for visual
air-to-air combat, but in practice it has been most used for ground support.
The ARPANET-INTERNET communication network originated as a govern-
ment-furnished computer-to-computer linkage in support of university
research; it is now most used, and paid for, by individuals for e-mail and
information accessing. Both are judged as successful. Why? Because, as
circumstances changed, providers and users redefined the meaning of useful,
affordable, and acceptable. A useful heuristic comes to mind: Design the
structure with “good bones.” It comes from the architecting of buildings,
bridges, and ships where it refers to structures that are resilient to a wide
range of stresses and changes in purpose. It could just as well come from
physiology and the remarkably adaptable spinal column and appendages
of all vertebrates — fishes, amphibians, reptiles, birds, and mammals.

Exercise: Identify a system whose purpose is clear and
unmistakable. Identify, contact, and, if possible, visit
its architect. Compare notes and document what you
learned.

Technology-driven systems, in notable contrast to purpose-driven sys-
tems, tell a still different story. They are the subject of Chapter 3.

A modeling methodology

Modeling is the creation of abstractions or representations of the system to
predict and analyze performance, costs, schedules, and risks, and to provide
guidelines for systems research, development, design, manufacture, and
management. Modeling is the centerpiece of systems architecting — a mech-
anism of communication to clients and builders, of design management with
engineers and designers, of maintaining system integrity with project man-
agement, and of learning for the architect, personally. 

Examples: The balsa wood and paper scale models of
a residence, the full-scale mockup of a lunar lander,
the rapid prototype of a software application, the com-
puter model of a communication network, or the men-
tal model of a user.
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Modeling is of such importance to architecting that it is the sole subject
of Part Three. At this point it is important to clear up a misconception. There
has been a common perception that modeling is solely a conceptual process;
that is, its purpose is limited to representing or simulating only the general
features of an eventual system. If so, a logical question can be raised: when
to stop modeling and start building? (It could almost have been asked as:
when to stop architecting and begin engineering?)

Indeed, just that question was posed by Mark Maier in the first USC
graduate class. Thinking had just begun on the so-called “stop question”
when it was realized that modeling did not stop at the end of conceptual-
ization in any case. Rather, it progressed, evolved, and solved problems from
the beginning of a system’s acquisition to its final retirement. There are, of
course, conceptual models, but there are also engineering models and sub-
system models; models for simulation, prototypes, and system test; demon-
stration models, operational models, and mental models by the user of how
the system behaves. 

Models are, in fact, created by many participants, not just by architects.
These models must somehow be made consistent with overall system imper-
atives. It is particularly important that they be consistent with the architect’s
system model, a model that evolves, becoming more and more concrete and
specific as the system is built. It provides a standard against which consis-
tency can be maintained, and is a powerful tool in maintaining the larger
objective of system integrity. And, finally, when the system is operational
and a deficiency or failure appears, a model — or full-scale simulator if one
exists — is brought into play to help determine the causes and cures of the
problem. The more complete the model, the more accurately possible failure
mechanisms can be duplicated until the one and only cause is identified. 

In brief, modeling is a multipurpose, progressive activity, evolving and
becoming less abstract and more concrete as the system is built and used.

Ultraquality implementation

Ultraquality is defined as a level of quality so demanding that it is impractical
to measure defects, much less certify the system prior to use.6 It is a limiting
case of quality driven to an extreme, a state beyond acceptable quality limits
(AQL) and statistical quality control. It requires a zero-defect approach not
only to manufacturing, but to design, engineering, assembly, test, operation,
maintenance, adaptation, and retirement — in effect, the complete life cycle.

Some examples are a new-technology spacecraft with a design lifetime
of at least 10 years, a nuclear power plant that will not fail catastrophically
within the foreseeable future, and a communication network of millions of
nodes, each requiring almost 100% availability. Ultraquality is a recognition
that the more components there are in a system, the more reliable each
component must be to a point where, at the element level, defects become
impractical to measure within the time and resources available. Yet, the
reliability goal of the system as a whole must still be met. In effect, it reflects
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the not unreasonable demand that a system, regardless of size or complexity,
should not fail to perform more than about 1% or less of the time. An ICBM
shouldn’t. A shuttle, at least 100 times more complex, shouldn’t. An auto-
mobile shouldn’t. A passenger airliner, at least 100 times more complex,
shouldn’t; as a matter of fact, we expect the airliner to fail far, far less than
the family car.

Exercise: Trace the histories of commercial aircraft and
passenger buses over the last 50 years in terms of the
number of trips that a passenger would expect to make
without an accident. What does that mean to vehicle
reliability as trips lengthen and become more frequent,
as vehicles get larger, faster, and more complex? How
were today’s results achieved? What trends do you
expect in the future? Did more software help or hinder
vehicle safety?

The subject would be moot if it were not for the implications of this
“limit state” of zero defects to design. Zero defects, in fact, originated as
long ago as World War II, largely driven by patriotism. As a motivator, the
zero defects principle was a prime reason for the success of the Apollo
mission to the moon.

To show the implications of ultraquality processes, if a manufacturing
line operated with zero defects there would be no need, indeed it would be
worthless, to build elaborate instrumentation and information processing
support systems. This would reduce costs and time, instead, by 30%. If an
automobile had virtually no design or production defects, then sales outlets
would have much less need for large service shops with their high capital
and labor costs. Indeed, the service departments of the finest automobile
manufacturers are seldom fully booked, resembling something like the
famous Maytag commercial. Very little repair or service, except for routine
maintenance, is required for 50 to 100,000 miles. Not coincidentally, these
shops invariably are spotlessly clean, evidence of both the professional pride
and discipline required for sustaining an ultraquality operation. Conversely,
a dirty shop floor is one of the first and best indicators to a visitor or inspector
of low productivity, careless workmanship, reduced plant yield, and poor
product performance. The rocket, ammunition, solid state component, and
automotive domains all bear witness to that fact.

As another example, microprocessor design and development has main-
tained the same per-chip defect rate even as the number and complexity of
operations increased by factors of thousands. The corresponding failure rate
per individual operation is now so low as to be almost unmeasurable.
Indeed, for personal computer applications, a microprocessor hardware fail-
ure more than once a year borders on the unacceptable.

Demonstrating this limit state in high quality is not a simple extension
of existing quality measures, though the latter may be necessary in order to
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get within range of it. In the latter there is an heuristic: (measurable) accep-
tance tests must be both complete and passable. How, then, can an inher-
ently unmeasurable ultraquality be demanded or certified? Most of the
answer seems to be in surrogate procedures, such as a zero defects program,
and less in measurements, not because finer measurements would not be
useful but because system complexity has outpaced instrument accuracy.

In that respect, a powerful addition to pre-1990 ultraquality techniques
was the concept, introduced in the last few years, that each participant in a
system acquisition sequence is both a buyer and a supplier. The original
application, apparently a Japanese idea, was that each worker on a produc-
tion line was a buyer from the preceding worker in the production line as
well as a supplier to the next. Each role required a demand for high quality;
that is, a refusal to buy a defective item and a concern not to deliver a
defective one likely to be refused.7 In effect, the supplier-buyer concept
generates a self-enforcing quality program with built-in inspection. There
would seem to be no reason why the same concept should not apply through-
out system acquisition — from architect to engineer to designer to producer
to seller to end user. As with all obvious ideas, the wonder is why it wasn’t
self-evident earlier.

When discussing ultraquality it may seem odd to be discussing heuris-
tics. After all, isn’t something as technologically demanding as quality
beyond measure, the performance of things like heavy space boosters, not
the domain of rigorous, mathematical engineering? In part, of course, it is.
But experience has shown that rigorous engineering is not enough to achieve
ultraquality systems. Ultraquality is achieved by a mixture of analytical and
heuristic methods. The analytical side is represented by detailed failure
analysis and even the employment of proof techniques in system design. In
some cases these very rigorous techniques have been essential in allowing
certain types of ultraquality systems to be architected.

Flight computers are a good example of the mixture of analytical and
heuristic considerations in ultraquality systems. Flight control computers for
statically unstable aircraft are typically required to have a mean time between
failures (where a failure is one which produces incorrect flight control com-
mands) on the order of 10 billion hours. This is clearly an ultraquality
requirement since the entire production run of a given type of flight com-
puter will not collectively run for 10 billion hours during their operational
lifetimes. The requirement certainly cannot be proved by measurement and
analysis. Nevertheless, aircraft administration authorities require that such
a reliability requirement be certified.

Achieving the required reliability would seem to require a redundant
computer design as individual parts cannot reach that reliability level. The
problem with redundant designs is that introducing redundancy also intro-
duces new parts and functions, specifically the mechanisms that manage the
redundancy and must lock out the signals from redundant sections that have
failed. For example, in a triple redundant system the redundant components
must be voted to take the majority position (locking out a presumptive single
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failure). The redundancy management components are themselves subject
to failure, and it possible that a redundant system is actually more likely to
fail than one without redundancy. Further, “fault tolerance” depends upon
the fault to be tolerated. Tolerating mechanical failure is of limited value if
the fault is human error.

Creating redundant computers has been greatly helped by better anal-
ysis techniques. There are proof techniques that allow pruning of the
unworkable failure trees by assuming so called “Byzantine” failure* models.
These techniques allow strong statements to be made about the redundancy
properties of designs. The heuristic part is trying to verify the absence of
“common-mode-failures,” or failures in which several redundant and sup-
posedly independent components fail at the same time for the same reason.

The Ariane 5 space launch vehicle was destroyed on its initial flight in
a classic common mode failure. The software on the primary flight control
computer caused the computer to crash shortly after launch. The dual redun-
dant system then switched to the backup flight control computer, which had
failed as well moments before for exactly the same reason that the primary
computer failed. Ironically, the software failure was due to code leftover
from the Ariane 4 and not actually necessary for the phase of flight in which
it was operating. Arguably, in the case of the Ariane 5, more rigorous proof-
based techniques of the mixed software and systems design might have
found and eliminated the primary failure. 

The analytical side is not enough, however. The best analysis of failure
probabilities and redundancy can only verify that the system as built agrees
with the model analyzed, and that the model possesses desired properties.
It cannot verify that the model corresponds to reality. Well-designed
ultraquality systems fail, but they typically fail for reasons not anticipated
in the reliability model.

Certification

Certification is a formal statement by the architect to the client or user that
the system, as built, meets the criteria both for client acceptance and for
builder receipt of payment, i.e., it is ready for use (to fulfill its purposes).
Certification is the grade on the “final exams" of system test and evaluation.
To be accepted it must be well-supported, objective, and fair to client and
builder alike.

Exercise: Pick a system for which the purposes are
reasonably clear. What tests would you, as a client,
demand be passed for you to accept and pay for the
system? What tests would you, as a builder, contract
to pass in order to be paid? Whose word would each

* A Byzantine failure is one in which the failed component does the worst possible thing to the
system. It is as if the component were possessed by a malign intelligence. The power of the
technique is that it lends itself to certification, at least within the confines of well-defined models.
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of you accept that the tests had or had not been passed?
When should such questions be posed? (In first con-
cept.)

Clearly, if certification is to be unchallenged, then there must be no
perception of conflict of interest of the architect. This imperative has led to
three widely accepted, professionally understood, constraints8 on the role of
the architect:

1. A disciplined avoidance of value judgments, that is, of intruding in ques-
tions of worth to the client; questions of what is satisfactory, what is
acceptable, affordable, maintainable, reliable, etc. Those judgments
are the imperatives, rights, and responsibilities of the client. As a
matter of principle, the client should judge on desirability and the
architect should decide (only) on feasibility. To a client’s question of
“What would you do in my position?” the experienced architect re-
sponds only with further questions until the client can answer the
original one. To do otherwise makes the architect an advocate and, in
some sense, the “owner” of the end system, preempting the rights
and responsibilities of the client. It may make the architect famous,
but the client will feel used. Residences, satellites, and personal com-
puters have all suffered from such preemption (Frank Lloyd Wright
houses, low earth orbiting satellite constellations, and the Lisa com-
puter, respectively).

2. A clear avoidance of perceived conflict of interest through participation in
research and development, including ownership or participation in
organizations that can be, or are, building the system. The most evi-
dent conflict here is the architect recommending a system element
from which the architect will supply and profit. This constraint is
particularly important in builder-architected systems (Chapter 3).*

3. An arms-length relationship with project management, that is, with the
management of human and financial resources other than of the ar-
chitect’s own staff. The primary reason for this arrangement is the
overload and distraction of the architect created by the time-consum-
ing responsibilities of project management. A second conflict, similar
to that of participating in research and development, is created when-
ever architects give project work to themselves. If clients, for reasons
of their own, nonetheless ask the architect to provide project manage-
ment, it should be considered as a separate contract for a different
task requiring different resources. 

* Precisely this constraint led Congress to mandate the formation in 1960 of a non-profit
engineering company, The Aerospace Corporation, out of the for-profit TRW Corporation, a
builder in the aerospace business.
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Insights and heuristics

A picture is worth a thousand words. 
Chinese Proverb. 1000 BC

One insight is worth a thousand analyses. 
Charles Sooter, April 1993 

Insight, or the ability to structure a complex situation in a way that greatly
increases understanding of it, is strongly guided by lessons learned from
one’s own or others’ experiences and observations. Given enough lessons,
their meaning can be codified into succinct expressions called “heuristics,”
a Greek term for guide. Heuristics are an essential complement to analytics,
particularly in situations where analysis alone cannot provide either insights
or guidelines.9 In many ways they resemble what are called principles in
other arts; for example, the importance of balance and proportion in a paint-
ing, a musical composition, or the ensemble of a string quartet. Whether as
heuristics or principles, they encapsulate the insights that have to be
achieved and practiced before a masterwork can be achieved. 

Both architecting and the fine arts clearly require insight and inspiration
as well as extraordinary skill to reach the highest levels of achievement. Seen
from this perspective, the best systems architects are indeed artists in what
they do. Some are even artists in their own right. Renaissance architects like
Michaelangelo and Leonardo da Vinci were also consummate artists. They
not only designed cathedrals, they executed the magnificent paintings in
them. The finest engineers and architects, past and present, are often musi-
cians; Simon Ramo and Ivan Getting, famous in the missile and space field,
and, respectively, a violinist and pianist, are modern day examples. 

The wisdom that distinguishes the great architect from the rest is that
insight and inspiration, combined with well-chosen methods and guidelines
and fortunate circumstances, creates masterworks. Unfortunately, wisdom
does not come easily. As one conundrum puts it:

Success comes from wisdom.
Wisdom comes from experience.
Experience comes from mistakes.

Therefore, because success comes only after many mistakes, something
few clients would willingly support, it presumably is either unlikely or must
follow a series of disasters.

This reasoning might well apply to an individual. But applied to the
profession as a whole, it clearly does not. The required mistakes and expe-
rience and wisdom gained from them can be those of one’s predecessors,
not necessarily one’s own. 

And from that understanding comes the role of education. It is the place
of education to research, document, organize, codify, and teach those lessons
so that the mistakes need not be repeated as a prerequisite for future suc-
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cesses. Chapter 2, Heuristics as Tools, is a start in that direction for the art
of systems architecting.

The architecture paradigm summarized
This book uses the terms architect, architecture, and architecting with full
consciousness of the “baggage” that comes with their use. Civil architecture
is a well-established profession with its own professional societies, training
programs, licensure, and legal status. Systems architecting borrows from it
its basic attributes.

1. The architect is principally an agent of the client, not the builder.
Whatever organization the architect is employed by, the architect must
act in the best interests of the client for whom the system is being
developed.

2. The architect works jointly with the client and builder on problem
and solution definition. System requirements are an output of archi-
tecting, not really an input. Of course, the client will provide the
architect some requirements, but the architect is expected to jointly
help the client determine the ultimate requirements. An architect who
needs complete and consistent requirements to begin work, though
perhaps a brilliant builder, is not an architect.

3. The architect’s product, or “deliverable,” is an architecture represen-
tation, a set of abstracted designs of the system. The designs are not
(usually) ready to use to build something. They have to be refined,
just as the civil architect’s floorplans, elevations, and other drawings
must be refined into construction drawings.

4. The architect’s product is not just physical representations. As an
example, the civil architect’s client certainly expects a “ballpark” cost
estimate as part of any architecture feasibility question. So, too, in
systems architecting where an adequate system architecture descrip-
tion must cover whatever aspects of physical structure, behavior, cost,
performance, human organization, or other elements are needed to
clarify the clients’ priorities.

5. An initial architecture is a vision. An architecture description is a set
of specific models. The architecture of a building is more than the
blueprints, floorplans, elevations, and cost estimates. It includes ele-
ments of ulterior motives, beliefs, and unstated assumptions. This
distinction is especially important in creating standards. Standards
for architecture, like community architectural standards, are different
from blueprint standards promoted by agencies or trade associations.

Architecting takes place within the context of an acquisition process. The
traditional way of viewing hardware acquisitions is known as the waterfall
model. The waterfall model captures many important elements of architect-
ing practice, but it is also important in understanding other acquisition
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models, particularly the spiral for software, incremental development for
evolutionary designing, and collaborative assembly for networks.

The waterfall model of systems acquisition
As with products and their architectures, no process exists by itself. All
processes are part of still larger ones, and all processes have subprocesses.
As with the product of architecture, so also is the process of architecting a
part of a still larger activity, the acquisition of useful things. 

Hardware acquisition is a sequential process that includes design, engi-
neering, manufacturing, testing, and operation. This larger process can be
depicted as an expanded waterfall, Figure 1.2.10 The architect’s functional
relationship with this larger process is sketched in Figure 1.3. Managerially,
the architect could be a member of the client’s or the builder’s organization,
or of an independent architecting partnership in which perceptions of con-
flict of interest are to be avoided at all costs. In any case, and wherever the
architect is physically or managerially located, the relationships to the client
and the acquisition process are essentially as shown. The strongest (thickest
line) decision ties are with client need and resources, conception and model
building, and with testing, certification, and acceptance. Less prominent are
the monitoring ties with engineering and manufacturing. There are also
important, if indirect, ties with social and political factors, the “illities” and
the “real world.” 

This waterfall model of systems acquisition has served hardware sys-
tems acquisition well for centuries. However, as new technologies create
new, larger scale, more complex systems of all types, others have been

Figure 1.2     The expanded waterfall.
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needed and developed. The most recent ones are due to the needs of soft-
ware-intensive systems, as will be seen in Chapters 4 and 6 and in Part Three.
While these models change the roles and methods of the architecting process,
the basic functional relationships shown in Figure 1.3 remain much the same.

In any case, the relationships in Figure 1.3 are more complex than simple
lines might suggest. As well as indicating channels for two-way communi-
cation and upward reporting, they infer the tensions to be expected between
the connected elements, tensions caused by different imperatives, needs, and
perceptions.

Some of competing technical factors are shown in Figure 1.4.11 This figure
was drawn such that directly opposing factors pull in exactly opposite direc-
tions on the chart. For example, continuous evolution pulls against product
stability; a typical balance is that of an architecturally stable, evolving prod-
uct line. Low-level decisions pull against strict process control, which can
often be relieved by systems architectural partitioning, aggregation, and
monitoring. Most of these tradeoffs can be expressed in analytic terms, which
certainly helps, but some cannot, as will become apparent in the social
systems world of Chapter 5.

Exercise: Give examples from a specific system of what
information, decisions, recommendations, tasks, and
tensions might be expected across the lines of Figure
1.4.
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Spirals, increments, and collaborative assembly
Software developers have long understood that most software-intensive
projects are not well suited to a sequential process but to a highly iterative
one such as the spiral. There is a strong incentive to iteratively modify
software in response to user experience. As the market, or operational envi-
ronment, reveals new desires, those desires are fed back into the product.
One of the first formalizations of iterative development is due to Boehm and
his famous spiral model. The spiral model envisions iterative development
as a repeating sequence of steps. Instead of traversing a sequence of analysis,
modeling, development, integration, and test just once, software may return
over and over to each. The results of each are used as inputs to the next.
This is depicted in Figure 1.5. This model is extended in Chapter 4 to the
“Spiral-and-Circle” model depicted in Figure 4.3.

The original spiral model is intended to deliver one, hopefully stable,
version of the product, the final of which is delivered at the end of the last
spiral cycle. Multiple cycles are used for risk control. The nominal approach
is to set a target number of cycles at the beginning of development, and
partition the whole time available over the target number of cycles. The
objective of each cycle is to resolve the most risky thing remaining. For
example, if user acceptance was judged the most risky at the beginning of
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the project, the first spiral would concentrate on those parts of the system
that produce the greatest elements of user experience. Even the first cycle
tests would focus on increasing user acceptance. Similarly, if the most risky
element was judged to be some internal technical performance issue, the
product of the initial cycle would focus on technical feasibility.

Many software products, or the continuing software portion of many
product lines, are delivered over and over again. A user may buy the hard-
ware once and expect to be offered a steady series of software upgrades that
improve system functionality and performance. This alters a spiral develop-
ment process (which has a definite end) to an incremental process, which
has no definite end. The model is now more like a spiral spiraling out to
circles which represent the stable products to be delivered. After one circle
is reached, an increment is delivered and the process continues. Actually,
the notion of incremental delivery appears in the original spiral model where
the idea is that the product of spirals before the last can be an interim product
release if, for example, the final product is delayed.

Finally, there are a number of systems in use today that are essentially
continuously assembled, and the assembly process is not directly controlled.
The canonical example is the Internet, where the pieces evolve with only
loose coupling to the other pieces. Control over development and deploy-
ment is fundamentally collaborative. Organizations, from major corpora-
tions to individual users, choose which product versions to use and when.
No governing body exists (at least not yet) that can control the evolution of
the elements. The closest thing at present to a governing body, the Internet
Society, and its engineering arm, the Internet Engineering Task Force (IETF),

Figure 1.5
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can affect other behavior only through persuasion. If member organizations
do not choose to support IETF standards the IETF has no authority to compel
compliance or block noncomplying implementations.

We call systems like this “collaborative systems.” The development pro-
cess is collaborative assembly. Whether or not such an uncontrolled process
can continue for systems like the Internet as they become central to daily
life is unknown, but the logic and heuristics of such systems now is the
subject of Chapter 7.

Summary and conclusions
A system is a collection of different things that together produce results
unachievable by themselves alone. The value added by systems is in the
interrelationships of their elements.

Architecting is creating and building structures, i.e., “structuring.” Sys-
tems architecting is creating and building systems. It strives for fit, balance,
and compromise among the tensions of client needs and resources, technol-
ogy, and multiple stakeholder interests.

Architecting is both an art and a science — synthesis and analysis,
induction and deduction, and conceptualization and certification — using
guidelines from its art and methods from its science. As a process, it is
distinguished from systems engineering in its greater use of heuristic rea-
soning, lesser use of analytics, closer ties to the client, and particular concern
with certification of readiness for use

The foundations of systems architecting are a systems approach, a pur-
pose orientation, a modeling methodology, ultraquality, certification, and
insight. To avoid perceptions of conflict of interest, architects must avoid
value judgments, avoid perceived conflicts of interest, and keep an arms-
length relationship with project management. 

A great architect must be as skilled as an engineer and as creative as an
artist or the work will be incomplete. Gaining the necessary skills and
insights depends heavily on lessons learned by others, a task of education
to research and teach.

The role of systems architecting in the systems acquisition process
depends upon the phase of that process. It is strongest during conceptual-
ization and certification, but never absent. Omitting it at any point, as with
any part of the acquisition process, leads to predictable errors of omission
at that point to those connected with it.
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chapter two

Heuristics as tools

Introduction: a metaphor
Mathematicians are still smiling over a gentle self-introduction by one of
their famed members. “There are three kinds of mathematicians,” he said,
“those that know how to count and those that don’t.” The audience waited
in vain for the third kind until, with laughter and appreciation, they caught
on. Either the member couldn’t count to three — ridiculous — or he was
someone who believed that there was more to mathematics than numbers,
important as they were. The number theorists appreciated his acknowledg-
ment of them. The “those that don’ts” quickly recognized him as one of their
own, the likes of a Gödel who, using thought processes alone, showed that
no set of theorems can ever be complete.

Modifying the self-introduction only slightly to the context of this chap-
ter, there are three kinds of people in our business: those who know how to
count and those who don’t, including the authors. 

Those who know how to count (most engineers) approach their design
problems using analysis and optimization, powerful and precise tools
derived from the scientific method, and calculus. Those who don’t (most
architects) approach their qualitative problems using guidelines, abstrac-
tions, and pragmatics generated by lessons learned from experience; that is,
heuristics. As might be expected, the tools each use are different because the
kinds of problems they solve are different. We routinely and accurately
describe an individual as “thinking like an engineer” or architect, or scientist,
or artist. Indeed, by their tools and works ye shall know them.

This chapter, metaphorically, is about architects’ heuristic tools. As with
the tools of carpenters, painters, and sculptors, there are literally hundreds
of them — but only a few are needed at any one time and for a specific job
at hand. To continue the metaphor, although a few tool users make their
own, the best source is usually a tool supply store, whether it be for hard-
ware, artists’ supplies, software, or heuristics. Appendix A, Heuristics for
Systems-Level Architecting, is a heuristics store, organized by task, just like
any good hardware store. Customers first browse, then select a kit of tools
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based on the job, personal skill, and a knowledge of the origin and intended
use of each tool.

Heuristic has a Greek origin, heuriskein, a word meaning “to find a way”
or “to guide” in the sense of piloting a boat through treacherous shoals.
Architecting is a form of piloting. Its rocks and shoals are the risks and
changes of technology, construction, and operational environment that char-
acterize complex systems. Its safe harbors are client acceptance and safe,
dependable, long life. Heuristics are guides along the way — channel mark-
ings, direction signs, alerts, warnings, and anchorages — tools in the larger
sense. But they must be used with judgment. No two harbors are alike. The
guides may not guarantee safe passage, but to ignore them may be fatal.
The stakes in architecting are just as high — reputations, resources, vital
services, and, yes, lives. Consonant with their origin, the heuristics in this
book are intended to be trusted, time-tested guidelines for serious problem
solving.

Heuristics as thus defined are narrower in scope, subject to more critical
test and selection, and intended for more serious use than other guidelines;
for example, conventional wisdom, aphorisms, maxims, and rules of thumb
and the like. Also, a pair of mutually contradictory statements like look before
you leap and he who hesitates is lost are hardly useful guides when encounter-
ing a cliff while running for your life. In this book, neither of these examples
would be a valid heuristic because they offer contradictory advice for the
same problem.

The purpose of this chapter is, therefore, to help the reader — whether
architect, engineer, or manager — find or develop heuristics that can be
trusted, organize them according to need, and use them in practice. The first
step is to understand that heuristics are abstractions of experience. 

Heuristics as abstractions of experience
One of the most remarkable characteristics of the human race is its ability
not only to learn, but to pass on to future generations sophisticated abstrac-
tions of lessons learned from experience. Each generation knows more, learns
more, plans more, tries more, and succeeds more than the previous one
because it needn’t repeat the time-consuming process of reliving prior expe-
riences. Think of how extraordinarily efficient are such quantifiable abstrac-
tions as F = ma, E = mc2 and x = F(y,z,t); of algorithms, charts, and graphs;
and of the basic principles of economics. This kind of efficiency is essential
if large, lengthy, complex systems and long-lived product lines are to suc-
ceed. Few architects ever work on more than two or three complex systems
in a lifetime. They have neither the time nor the opportunity to gain the
experience needed to create first-rate architectures from scratch. By much
the same process, qualitative heuristics, condensed and codified practical
experience, came into being to complement the equations and algorithms of
science and engineering in the solving of complex problems. Passed from
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architect to architect, from system to system, they worked and helped satisfy
a real need. 

In contrast to the symbols of physics and mathematics, the format of
heuristics is words expressed in the natural languages. Unavoidably, they
reflect the cultures of engineering, business, exploration, and human rela-
tions in which they arose. The birth of a heuristic begins with anecdotes and
stories, hundreds of them, in many fields which become parables, fables,
and myths,1 easily remembered for the lessons they teach. Their impact, even
at this early stage, can be remarkable not only on politics, religion, and
business, but on the design of technical systems and services. The lessons
that have endured are those that have been found to apply beyond the
original context, extended there by analogy, comparison, conjecture, and
testing.* At their strongest they are seen as self-evident truths requiring no
proof. 

There is an interesting human test for a good heuristic. An experienced
listener, on first hearing one, will know within seconds that it fits that
individual’s model of the world. Without having said a word to the speaker,
the listener almost invariably affirms its validity by an unconscious nod of
the head, and then proceeds to recount a personal experience that strength-
ens it. Such is the power of the human mind.

Selecting a personal kit of heuristic tools

The art in architecting lies not in the wisdom of the heuris-
tics, but in the wisdom of knowing which heuristics apply,
a priori, to the current project.2

All professions and their practitioners have their own kits of tools, physical
and heuristic, selected from their own and others’ experiences to match their
needs and talents. But, in the case of architecting and engineering prior to
the late 1980s, selections were limited and, at best, difficult to acquire. An
effort was therefore made in the USC graduate course in systems architecting
to create a much wider selection by gathering together lessons learned
throughout the West Coast aerospace, electronics, and software industries
and expressing them in heuristic form for use by architects, educators,
researchers, and students.

An initial collection3 of about 100 heuristics was soon surpassed by
contributions from over 200 students, reaching nearly 1000 heuristics within
6 years.4 Many, of course, were variations on single, central ideas — just as
there are many variations of hammers, saws, and screwdrivers — repeated

* This process is one of inductive reasoning, “a process of truth estimation in the face of
incomplete knowledge which blends information known from experience with plausible con-
jecture.” Klir, G. J., Architecture of Systems Problem Solving, Plenum Press, New York, 1985, 275.
More simply, it is an extension or generalization from specific examples. It contrasts with
deductive reasoning, which derives solutions for specific cases from general principles.
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time and time again in different contexts. The four most widely applicable
of these heuristics were, in decreasing order of popularity:

• Don’t assume that the original statement of the problem is neces-
sarily the best, or even the right one.

Example: The original statement of the problem for the
F-16 fighter aircraft asked for a high supersonic capa-
bility, which was difficult and expensive to produce.
Discussions with the architect, Harry Hillaker, brought
out that the reason for this statement was to provide
a quick exit from combat, something far better provid-
ed by a high thrust-to-weight, low supersonic design.
In short, the original high speed statement was re-
placed by a high acceleration one, with the added ad-
vantage of exceptional maneuverability. 

• In partitioning, choose the elements so that they are as independent
as possible; that is, elements with low external complexity and high
internal complexity. 

Example: One of the difficult problems in the design
of microchips is the efficient use of their surface area.
Much of that area is consumed by connections between
components; that is, by communications rather than
by processing. Professor Carver Mead of Caltech has
now demonstrated that a design based on minimum
communications between process-intensive nodes re-
sults in much more efficient use of space, with the
interesting further result that the chip “looks elegant”
— a sure sign of a fine architecture and another con-
firmation of the heuristic, the eye is a fine architect.
Believe it. 

• Simplify. Simplify. Simplify.

Example: One of the best techniques for increasing
reliability while decreasing cost and time is to reduce
the piece part count of a device. Automotive engineers,
particularly recently, have produced remarkable re-
sults by substituting single castings for multiple as-
semblies and by reducing the number of fasteners and
their associated assembly difficulties by better place-
ment. A comparable result in computer software is the
use of reduced instruction set computers (RISC) which
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increase computing speed for much the same hard-
ware.

• Build in and maintain options as long as possible in the design and
implementation of complex systems. You will need them.

Example: In the aircraft business they are called
“scars.” In the software business they are called
“hooks.” Both are planned breaks or entry points into
a system which can extend the functions the system
can provide. For aircraft, they are used for lengthening
the fuselage to carry more passengers or freight. For
software, they are used for inserting further routines.

Though these four heuristics do not make for a complete tool kit, they
do provide good examples for building one. All are aimed at reducing
complexity, a prime objective of systems architecting. All have been trusted
in one form or another in more than one domain. All have stood the test of
time for decades if not centuries. 

The first step in creating a larger kit of heuristics is to determine the
criteria for selection. The following were established to eliminate unsubstan-
tiated assertions, personal opinions, corporate dogma, anecdotal specula-
tion, mutually contradictory statements, etc. As it turned out, they also
helped generalize domain-specific heuristics into more broadly applicable
statements. The strongest heuristics passed all the screens easily. The criteria
were

• The heuristic must make sense in its original domain or context. To
be accepted, a strong correlation, if not a direct cause and effect, must
be apparent between the heuristic and the successes or failures of
specific systems, products, or processes. Academically speaking, both
the rationale for the heuristic and the report that provided it were
subject to peer and expert review. As might be expected, a valid
heuristic seldom came from a poor report.

• The general sense, if not the specific words, of the heuristic should
apply beyond the original context. That is, the heuristic should be
useful in solving or explaining more than the original problem from
which it arose. An example is the foregoing don’t assume heuristic.
Another is before the flight it’s opinion; after the flight it’s obvious.
In the latter, the word “flight” can be sensibly replaced by test, exper-
iment, fight, election, proof, or trial. In any case, the heuristic should
not be wrong or contradictory in other domains where it could lead
to serious misunderstanding and error. This heuristic applies in gen-
eral to ultraquality systems. When they fail, and they usually fail after
all the tests are done and they are in actual use, we wonder how we
missed such an obvious failure of our assumptions.
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• The heuristic should be easily rationalized in a few minutes or on less
than a page. As one of the heuristics itself states: “If you can’t explain
it in five minutes, either you don’t understand it or it doesn’t work
(Darcy McGinn 1992, from David Jones). With that in mind, the more
obvious the heuristic is on its face, and the fewer the limitations on
its use, the better. Example: A model is not reality. 

• The opposite statement of the heuristic should be foolish, clearly not
“common sense.” For example: The opposite of Murphy’s Law — “If
it can fail, it will” — would be “If it can fail, it won’t,” which is patent
nonsense. 

• The heuristic’s lesson, though not necessarily its most recent formu-
lation, should have stood the test of time and earned a broad consen-
sus. Originally this criterion was that the heuristic itself had stood the
test of time, a criterion that would have rejected recently formulated
heuristics based on retrospective understanding of older or lengthy
projects. Example: The beginning is the most important part of the
work (Plato 4th Century B. C.), reformulated more recently as All the
serious mistakes are made in the first day (Robert Spinrad, 1988).

It is probably true that heuristics can be even more useful if they can be
used in a set, like wrenches and screwdrivers, hammers and anvils, or files
and vises. The taxonomy grouping to follow achieves that possibility in part. 

It is also probably true that a proposed action or decision is stronger if
it is consistent with several heuristics rather than only one. A set of heuristics
applicable to acceptance procedures substantiates that proposition. 

And it would certainly seem desirable that a heuristic, taken in a suffi-
ciently restricted context, could be specialized into a design rule; a quanti-
fiable, rational evaluation; or a decision algorithm. If so, heuristics of this
type would be useful bridges between architecting, engineering, and design. 

Using heuristics
Virtually everybody, after brief introspection, sees that heuristics play an
important role in their design and development activities. However, even if
we accept that everyone uses heuristics, it is not obvious that those heuristics
can be communicated to and used by others. This book takes the approach
that heuristics can be effectively communicated to others. One lesson from
student use of Rechtin, 1991, and the first edition of this book, is that heu-
ristics do transfer from one person to another, but not always in simple ways.
It is useful to document heuristics and teach from them, but learning styles
differ.

People typically use heuristics in three ways. First, they can be used as
evocative guides. They work as guides if they evoke new thoughts in the
reader. Some readers have reported that they use the catalog of heuristics in
the appendices at random when faced with a difficult design problem. If one
of the heuristics seems suggestive, they follow up by considering how that
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heuristic could describe the present situation, what solutions it might sug-
gest, or what new questions it suggests.

The second usage is as codifications of experience. In this usage the
heuristic is like an outline heading, a guide to the detailed discussion that
follows. In this case the stories behind the heuristics can be more important
than the basic statement. The heuristic is a pedagogical tool, a way of teach-
ing lessons not well captured in other engineering teaching methods.

The third usage, of special interest in this second edition, is the most
structured. It is when heuristics are integrated into development processes.
A good example is in software. A number of software development methods
have a sequence of models, from relatively abstract to code in a programming
language. Object-oriented methods, for example, usually begin with a set of
textual requirements: build a model of classes and objects, and then refine
the class/object model into code in the target programming environment.
There are often intermediate steps in which the problem domain derived
objects are augmented with objects and characteristics from the target envi-
ronment. A problem in all such methods is knowing how to construct the
models at each step. The transformation from a set of textual requirements
to classes and objects is not unique; it involves extensive judgment by the
practitioner. Some methods provide assistance to the practitioner by giving
explicit, prescriptive heuristics for each step. 

Heuristics on heuristics
A phenomenon observed as heuristics was discovered by the USC graduate
students when the discoverers themselves began thinking heuristically. They
found themselves creating heuristics directly from observation and discus-
sion, then trying them out on professional architects and engineers, some of
whose experiences had suggested them. (Most interviewees were surprised
and pleased at the results.) The resultant provisional heuristics were then
submitted for academic review as parts of class assignments.

Kenneth L. Cureton, carrying the process one step further, generated a
set of heuristics on how to generate and apply heuristics,5 from which the
following were chosen.

Generating useful heuristics

• Humor (and careful choice of words) in a heuristic provide an emo-
tional bite that enhances the mnemonic effect (Karklins).

• Use words that transmit the “thrill of insight” into the mind of the
beholder.

• For maximum effect, try embedding both descriptive and prescriptive
messages in a heuristic.

• Many heuristics can be applied to heuristics themselves; e.g., Simpli-
fy. Scope.
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• Don’t make a heuristic so elegant that it only has meaning to its
creator, thus losing general usefulness.

• Rather than adding a conditional statement to a heuristic, consider
creating a separate but associated heuristic that focuses on the insight
of dealing with that conditional situation.

Applying heuristics

• If it works, then it’s useful.
• Knowing when and how to use a heuristic is as important as knowing

the what and why.
• Heuristics work best when applied early to reduce the solution space.
• Strive for balance — too much of a good thing or complete elimination

of a bad thing may make things worse, not better!
• Practice, practice, practice.
• Heuristics aren’t reality, either.

A taxonomy of heuristics
The second step after finding or creating individual heuristics is to organize
them for easy access so that the appropriate ones are at hand for the imme-
diate task. The collection mentioned earlier in this chapter was accordingly
refined and organized by architecting task.* In some ways, the resultant list
— presented in Appendix A — was self-organizing. Heuristics tended to
cluster around what became recognized as basic architecting tasks. For exam-
ple, although certifying is shown last and is one of the last formal phases in
a waterfall, it actually occurs at many milestones as “sanity checks” are made
along the way and subsystems are assembled. The tasks, elaborated in Chap-
ter 9, pages 177–186, are

• Scoping and planning
• Modeling
• Prioritizing
• Aggregating
• Partitioning
• Integrating
• Certifying
• Assessing
• Evolving and rearchitecting

The list is further refined by distinguishing between two forms of heu-
ristic. One form is descriptive; that is, it describes a situation but does not

* The original 100 of Rechtin, 1991, were organized by the phases of a waterfall. The list in
Appendix A of this book recognizes that many heuristics apply to several phases, that the spiral
model of system development would in any case call for a different categorization, and that
many of the tasks described here occur over and over again during systems development.
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indicate directly what to do about it. Another is prescriptive; that is, it
prescribes what might be done about the situation. An effort has been made
in the appendix to group prescriptions under appropriate descriptions with
some, but not complete, success. Even so, there are more than enough gen-
erally applicable heuristics for the reader to get started.

Then there are sets of heuristics that are domain-specific to aircraft,
spacecraft, software, manufacturing, social systems, etc. Some of these can
be deduced or specialized from more general ones given here; or, they can
be induced or generalized from multiple examples in specialized subdo-
mains. Still more fields are explored in Part Three, adding further heuristics
to the general list. 

The readers are encouraged to discover still more, general and special-
ized, in much the same way the more general ones here were — by spotting
them in technical journals, books,6 project reports, management treatises,
and conversations.

The Appendix A taxonomy is not the only possible organizing scheme
any more than all tool stores are organized in the same way. In Appendix
A, one heuristic follows another, one dimensionally, as in any list; but some
are connected to others in different categories, or could just as easily be
placed there. Some are “close” to others and some are further away. Dr. Ray
Madachy, then a graduate student, using hypertext linking, converted the
list into a two-dimensional, interconnected “map” in which the main nodes
were architecting themes: conception and design; the systems approach;
quality and safety; integration, test, and certification; and disciplines.7 To
these were linked each of the 100 heuristics in the first systems architecting
text,8 which in turn were linked to each other. The ratio of heuristic-to-
heuristic links to total links was about 0.2; that is, about 20% of the heuristics
overlapped into other nodes.

The Madachy taxonomy, however, shared a limitation common to all
hypertext methods — the lack of upward scalability into hundreds of objects
— and, consequently, was not used for Appendix A. Nonetheless, it could
be useful for organizing a modest-sized personal tool kit or for treating
problems already posed in object-oriented form; for example, computer-
aided design of spacecraft.9

New directions
Heuristics are a popular topic in systems and software engineering, though
they don’t often go by that name. A notable example is the pattern language.
The idea of patterns and pattern languages comes from Christopher Alex-
ander and has been adapted to other disciplines by other writers. Most of
the applications are to software engineering.

A pattern is a specific form of prescriptive heuristic. A number of forms
have been used in the literature, but all are similar. The basic form is a pattern
name, a statement of a problem, and a recommended form of solution (to
that problem). For example, a pattern in civil architecture has the title Masters
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and Apprentices, the problem statement describes the need for junior work-
ers to learn from senior master workers while working and the recom-
mended solution consists of suitable arrangements of work spaces.

When a number of patterns in the same domain are collected together
they can form a pattern language. The idea of a pattern language is that it
can be used as a tool for synthesizing complete solutions. The architect and
client use the collected problem statements to choose a set that is well-
matched to the client’s concerns. The resulting collection of recommended
solutions is a collection of fragments of a complete solution. It is the job of
the architect to harmoniously combine the fragments into a whole.

In general, domain-specific, prescriptive heuristics are the easiest for
apprentices to explain and use. So, patterns on coding in programming are
relatively easy to teach and to learn to use. This is borne out by the observed
utility of coding pattern books in university programming courses. Similarly,
an easy entry to the use of heuristics in when they are attached as step-by-
step guides in a structured development process. At the opposite end,
descriptive heuristics on general systems architecting are the hardest to
explain and use. They typically require the most experience and knowledge
to apply successfully. The catalog of heuristics in Appendix A has heuristics
across the spectrum.

Summary
Heuristics, as abstractions of experience, are trusted, nonanalytic guidelines
for treating complex, inherently unbounded, ill-structured problems. They
are used as aids in decision making, value judgments, and assessments. They
are found throughout systems architecting, from earliest conceptualization
through diagnosis and operation. They provide bridges between client and
builder, concept and implementation, synthesis and analysis, and system
and subsystem. They provide the successive transitions from qualitative,
provisional needs to descriptive and prescriptive guidelines and, hence, to
rational approaches and methods.

This chapter has introduced the concept of heuristics as tools — how to
find, create, organize, and use them for treating the qualitative problems of
systems architecting. Appendix A provides a ready source of them organized
by architecting task; in effect, a tool store of systems architecting heuristic
tools.
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Part two

New domains, new insights

Part Two explores, from an architectural point of view, five domains beyond
those of aerospace and electronics, the sources of most examples and writings
to date. The chapters can be read for several purposes. For a reader familiar
with a domain, there are broadly applicable heuristics for more effective
architecting of its products. For ones unfamiliar with domains, there are
insights to be gained from understanding problems differing in the degree
but not in kind from one’s own. To coin a metaphor, if the domains can be
seen as planets, then this part of the book corresponds to comparative plan-
etology — the exploration of other worlds to benefit one’s own. The chapters
can be read for still another purpose: as a template for exploring other
equally instructive domains. An exercise for that purpose can be found at
the end of Chapter 7, Collaborative Systems.

From an educational point of view, Part Two is a recognition that one
of the best ways of learning is by example, even if the example is in a different
field or domain. One of the best ways of understanding another discipline
is to be given examples of problems it solves; and one of the best ways of
learning architecting is to recognize that there are architects in every domain
and at every level from which others can learn and with whom all can work.
At the most fundamental level, all speak the same language and carry out
the same process: systems architecting. Only the examples are different. 

Chapter 3 explores systems for which form is predetermined by a
builder’s perceptions of need. Such systems differ from those that are driven
by client purposes by finding their end purpose only if they succeed in the
marketplace. The uncertainty of end purpose has risks and consequences
which are the responsibility of architects to help reduce or exploit. Central
to doing so are the protection of critical system parameters and the formation
of innovative architecting teams. These systems can be either evolutionary
or revolutionary. Not surprisingly, there are important differences in the
architectural approach.

Chapter 4 highlights the fact that manufacturing has its own waterfall,
quasi-independent of the more widely discussed product waterfall, and that
these two waterfalls must intersect properly at the time of production. A
spiral-to-circle model is suggested to help understand the integration of
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hardware and software. Ultraquality and feedback are shown to be the keys
to both lean manufacturing and flexible manufacturing, with the latter need-
ing a new information flow architecture in addition.

Chapter 5, Social Systems, introduces a number of new insights to those
of the more technical domains. Economic questions and value judgments
play a much stronger role here, even to the point of an outright veto of
otherwise worthwhile systems. A new tension comes to center stage, one
central to social systems but too often downplayed in others until too late
— the tension between facts and perceptions. It is so powerful in defining
success that it can virtually mandate system design and performance, solely
because of how that architecture is perceived.

Chapter 6, Software Systems, serves to introduce this rapidly expanding
domain as it increasingly becomes the center of almost all modern systems
designs. Consequently, whether stand-alone or as part of a larger system,
software systems must accommodate to continually changing technologies
and product usage. In very few other domains is annual, much less monthly,
wholesale replacement of a deployed system economically feasible or even
considered. In point of fact, it is considered normal in software systems,
precisely because of software’s unique ability to continuously and rapidly
evolve in response to changes in technology and user demands. Software
has another special property; it can be as hard or as soft as needed. It can
be hard-wired if certification must be precise and unchanging, or it can be
as soft as a virtual environment molded at the will of a user. For these and
other reasons, software practice is heavily dependent on heuristic guidelines
and organized, layered modeling. It is a domain in which architecting devel-
opment is very active, particularly in progressive modeling and rapid pro-
totyping. 

Chapter 7 introduces an old but newly significant class of systems,
collaborative systems. Collaborative systems exist only because the partici-
pants actively and continuously work to keep it in existence. A collaborative
system is a dynamic assemblage of independently owned and operated
components, each one of which exists and fulfills its owner’s purposes
whether or not it is part of the assemblage. These systems have been around
for centuries in programs of public works. Today we find wholly new forms
in communications (the Internet and World Wide Web), transportation (intel-
ligent transportation systems), military (multinational reconnaissance-strike
and defensive systems), and software (open source software). The architect-
ing paradigm begins to shift in collaborative systems because the architect
no longer has a single client who can make and execute decisions. The
architect must now deal with more complex relationships, and he must find
architectures in less familiar structures, such as architecture through com-
munication or command protocol specification.

The nature of modern software and information-centric systems, and
their central role in new complex systems, makes a natural lead-in to Part
Three, Models and Representations.
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chapter three

Builder-architected systems

No system can survive that doesn’t serve a useful purpose.
Harry Hillaker*

Introduction: the form-first paradigm
The classical architecting paradigm is not the only way to create and build
large complex systems, nor is it the only regime in which architects and
architecting is important. A different architectural approach, the “form first,”
begins with a builder-conceived architecture in mind, rather than with a set
of client-accepted purposes. Its architects are generally members of the tech-
nical staff of the company. Their client is the company itself; although the
intention is to reach a customer base in the market.

Incremental development for an existing customer

Most builder-initiated architectures are variations of existing ones; as exam-
ples consider jet aircraft, personal computers, smart automobiles, and follow-
on versions of existing software applications. The original architectures hav-
ing proved by use to be sound, variations and extensions should be of low
risk. Extensive reuse of existing modules should be expected because design
assumptions, system functions, and interfaces are largely unchanged.

The architect’s responsibilities remain much the same as under the clas-
sical paradigm, but with an important addition: the identification of propri-
etary architectural features deemed critical to maintaining competitive
advantage in the marketplace. Lacking this identification, the question “who
owns what?” can become so contentious for both builder and customer that
product introduction can be delayed for years.

Far more important than these relatively low risks is the paradigm shift
from function-to-form (purpose driven) to one of form-to-function (form
driven). Unlike the classical paradigm, in form-first architecting, one’s cus-

* Chief architect, General Dynamics F-16 Fighter. As stated in a USC Systems Architecting
lecture, November, 1989.
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tomers judge the value of the product after rather than before the product
has been developed and produced, much less “test-driven.” The resultant
risk has spawned several risk-reduction strategies. The simplest is an early
prototype demonstration to present customers, with its associated risks of
premature rejection. The most recent strategy is probably the Open Source
method for designing software — an “anyone can play,” unbelievably open
process in which anyone even marginally interested can participate, com-
ment, submit ideas, develop software, and use the system, all at no cost to
the participant. With the project being tied together by the Internet (and
some unique social conventions), everyone — and particularly the builder
and potential clients — knows and can judge its utility. The risk of rejection
is sharply reduced at the possible cost of control of design. The open source
community is a principal example of collaborative system assembly. We
discuss that topic specifically in Chapter 7.

New markets for existing products

The next level of architecting intensity is reached when the builder’s moti-
vation is to reach uncertain or “latent” markets in which the unknown
customer must acquire the product before judging its value. Almost certainly,
the product will have to be at least partially rearchitected in cost, perfor-
mance, availability, quantities produced, etc. To succeed in the new venture,
architecting must be particularly alert, making suggestions or proposing
options without seriously violating the constraints of an existing product
line. Hewlett-Packard in the 1980s developed this architecting technique in
a novel way. Within a given product line, say that of a “smart” analytic
instrument, a small set of feasible “reference” architectures are created, each
of which is intended to appeal to a different kind of customer. Small changes
in that architecture then enable tailoring to customer-expressed priorities.
Latent markets discovered in the process can then be quickly exploited by
expansion of the product line.

The original product line architecture can be maintained with few mod-
ifications or risks until a completed system is offered to the market. Because
buyers determine the real value of a system, end purpose and survival are
determined last, not first.

New products, new markets

Of greatest risk are those form-first, technology-driven systems that create
major qualitative changes in system-level behavior, changes in kind rather
than of degree. Systems of this type almost invariably require across-the-
board new starts in design, development, and use. They most often arise
when radically new technologies become available such as jet engines, new
materials, microprocessors, lasers, software architectures, and intelligent
machines. Although new technologies are infamous for creating unpleasant
technological and even sociological surprises, by far the greatest single risk
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in these systems is one of timing. Even if the form is feasible, introducing a
new product either too early or too late can be punishing. Douglas Aircraft
Company was too late into jet aircraft, losing out for years to the Boeing
Company. Innumerable small companies have been too early, unable to
sustain themselves while waiting for the technologies to evolve into engi-
neered products. High tech defense systems, most often due to a premature
commitment to a critical new technology, have suffered serious cost overruns
and delays. 

Technological substitutions within existing systems
The second greatest single risk is in not recognizing that before they are
completed, technology-driven architectures will require much more than just
replacing components of an older technology one at a time. Painful experi-
ence shows that without widespread changes in the system and its manage-
ment, technology-driven initiatives seldom meet expectations and too often
cost more for less value. As examples, direct replacements of factory workers
with machines,1 of vacuum tubes with transistors, of large inventories with
Just-In-Time deliveries, and of experienced analysts with computerized man-
agement information systems, all collapsed when attempted by themselves
in systems that were otherwise unchanged. They succeeded only when incor-
porated in concert with other matched and planned changes. It is not much
of an exaggeration to say that the latter successes were well architected, the
former failures were not.

In automobiles, the most recent and continuing change is the insertion
of ultraquality electronics and software between the driver and the mechan-
ical subsystems of the car. This remarkably rapid evolution removes the
driver almost completely from contact with, or direct physical control of,
those subsystems. It considerably changes such overall system characteristics
as fuel consumption, aerodynamic styling, driving performance, safety, and
servicing and repair, as well as the design of such possibly unexpected
elements as engines, transmissions, tires, dashboards, seats, passenger
restraints, and freeway exits. As a point of fact, the automotive industry
expects that by the turn of the century more than 93% of all automotive
equipment will be computer-controlled,2 a trend evidently welcomed and
used by the general public. A telling indicator of the public’s perception of
automotive performance and safety is the recent, virtually undisputed
increase in national speed limits. Safe, long-distance highway travel at 70
mph (117 km/h) was rare, even dangerous, a decade ago. Even if the high-
ways were designed for it, conventional cars and trucks were not. It is now
common, safe, and legal. Perhaps the most remarkable fact about this rapid
evolution is that most customers were never aware of it. This result came
from a commitment to quality so high that a much more complex system
could be offered that, contrary to the usual experience, worked far better
than its simpler predecessor.
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In aircraft, an equivalent, equally rapid, technology-driven evolution is
“fly by wire,” a change that, among other things, is forcing a social revolution
in the role of the pilot and in methods of air traffic control. More is involved
than the form-fit-function replacement of mechanical devices with a combi-
nation of electrical, hydraulic, and pneumatic units. Aerodynamically stable
aircraft, which maintain steady flight with nearly all controls inoperative,
are steadily being replaced with ones which are less stable, more maneuver-
able, and computer-controlled in all but emergency conditions. The gain is
more efficient, potentially safer flight; but the transition has been as difficult
as that between visual- and instrument-controlled flight.

In inventory control, a remarkable innovation has been the very profit-
able combination in one system of point-of-sale terminals, of a shift of inven-
tory to central warehouses, and of Just-In-Time deliveries to the buyer. Note
the word combination. None of the components has been particularly suc-
cessful by itself. The risk here is greater susceptibility to interruption of
supply or transportation during crises. 

In communications, satellites, packet switching, high-speed fiber optic
lines, e-mail, the World Wide Web, and electronic commerce have combined
for easier access to a global community, but with increasing concerns about
privacy and security. The innovations now driving the communications rev-
olution were not, individually, sufficient to create this revolution. It has been
the interaction of the innovations, and the changes in business processes and
personal habits connected to them, that have made the revolution.

In all of these examples, far more is affected than product internals.
Affected also are such externals as manufacturing management, equity
financing, government regulations, and the minimization of environmental
impact — to name but a few. These externals alone could explain the growing
interest by innovative builders in the tools and techniques of systems archi-
tecting. How else can a well-balanced, well-integrated, financially successful,
and socially acceptable total system be created? 

Consequences of uncertainty of end purpose

Uncertainty of end purpose, no matter what the reason, can have serious
consequences. The most serious is the likelihood of serious error in decisions
affecting system design, development, and production. Builder-architected
systems are often solutions looking for a problem and, hence, are particularly
vulnerable to the infamous “error of the third kind”: working on the wrong
problem.

Uncertainty in system purposes also weakens them as criteria for design
management. Unless a well-understood basis for configuration control exists
and can be enforced, system architectures can be forced off course by accom-
modations to crises of the moment. Some of the most expensive cases of
record have been in attempts to computerize management information sys-
tems. Lacking clear statements of business purposes and market priorities,
irreversible ad hoc decisions were made which so affected their performance,
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cost, and schedule that the systems were scrapped. Arguably, the best pre-
vention against “system drift” is to decide on provisional or baseline pur-
poses and stick to them. But what if those baseline purposes prove to be
wrong in the marketplace?

Reducing the risks of uncertainty of end purpose
A powerful architecting guide to protect against the risk of uncertain pur-
poses is to build in and maintain options. With options available, early
decisions can be modified or changed later. One possibility is to build in
options to stop at known points to guarantee at least partial satisfaction of
user purposes without serious losses in time and money; for example, in
databases for accounting and personnel administration. Another possibility
is to create architectural options that permit later additions, a favorite strat-
egy for automobiles and trucks. Provisions for doing so are hooks in software
to add applications and peripherals, scars in aircraft to add range and seats,
shunts in electrical systems to isolate troubled sections, contingency plans
in tours to accommodate cancellations, and forgiving exits from highways
to minimize accidents. 

In software, a general strategy is use open architectures. You will need
them once the market starts to respond. As will be seen, a further refinement
of this domain-specific heuristic will be needed, but this simpler version
makes the point for now.

And then there is the always welcome heuristic: every once in a while,
pause and reflect. Reexamine the cost effectiveness of system features such
as high-precision pointing for weather satellites or crosstalk levels for tactical
communication satellites.* Review why interfaces were placed where they
were. Check for unstated assumptions such as the cold war continuing
indefinitely** or the Sixties Generation turning conservative as it grew older.

Risk management by intermediate goals

Another strategy to reduce risk in the development of system-critical tech-
nologies is by scheduling a series of intermediate goals to be reached by
precursor or partial configurations. For example, build simulators or proto-
types to tie together and synchronize otherwise disparate research efforts.3
Building partial systems, demonstrators, or models to help assess the sensi-
tivity of customer acceptance to the builder’s or architect’s value judgments4

is a widely used market research technique. As will be seen in Chapter 4, if
these goals result in stable intermediate forms, they can be powerful tools
for integrating hardware and software.

* In real life, both features proved to be unnecessary but could not be eliminated by the time
that truth was discovered.
** A half-joking question in defense planning circles in the early 1980s used to be, “What if
peace broke out?” Five years later, it did.
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Clearly, precursor systems have to be almost as well architected as the
final product. If not, their failure in front of a prospective customer can play
havoc with future acceptance and ruin any market research program. As one
heuristic derived from military programs warns “the probability of an
untimely failure increases with the weight of brass in the vicinity.” If
precursors and demonstrators are to work well “in public,” they had better
be well designed and well built.

Even if a demonstration of a precursor succeeds, it can generate excessive
confidence, particularly if an untested requirement is critical. In one case, a
USAF satellite control system successfully and very publicly demonstrated
the ability to manage one satellite at a time; the critical task, however, was
to control multiple, different satellites, a test which it subsequently flunked.
Massive changes in the system as a whole were required. In a similar case,
a small launch vehicle, arguably successful as a high-altitude demonstrator
of single-stage-to-orbit, could not be scaled up to full size or full capability
for embarrassingly basic mechanical and materials reasons.

These kinds of experiences led to the admonition: do the hard parts first.
This is an extraordinarily difficult heuristic to satisfy if the hard part is a
unique function of the system as a whole. Such has been the case for a near
impenetrable missile defense system, stealthy aircraft, a general aviation air
traffic control system, a computer operating system, and a national tax
reporting system. The only credible precursor, to demonstrate the hard parts,
had to be almost as complete as the final product. 

In risk management terms, if the hard parts are, perhaps necessarily, left
to last, then the risk level remains high and uncertain to the very end. The
justification for the system therefore must be very high and the support for
it very strong or its completion will be unlikely. For private businesses this
means high-risk venture capital. For governments it means support by the
political process, a factor in system acquisition for which few architects,
engineers, and technical managers are prepared. Chapter 12, The Political
Process and Systems Architecting, is a primer on the subject.

The “what next?” quandary
One of the most serious long-term risks faced by a builder of a successful,
technology-driven system is the lack of, or failure to win a competition for,
a successor or follow-on to the original success. 

The first situation is well exemplified by a start-up company’s lack of a
successor to its first product. Lacking the resources in its early, profitless
years to support more than one research and development effort, it could
only watch helplessly as competitors caught up and passed it by. Ironically,
the more successful the initial product, the more competition it will attract
from established and well-funded producers anxious to profit from a sure
thing. Soon the company’s first product will be a “commodity,” something
which many companies can produce at a rapidly decreasing cost and risk.
Unable to repeat the first success, the start-up enterprise fails or is bought
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up at fire-sale prices when the innovator can no longer meet payroll. Com-
mon. Sad. Avoidable? Possibly.

The second situation is the all-too-frequent inability of a well-established
company which had been successfully supplying a market-valued system
to win contracts for its follow-on. In this instance, the very strength of the
successful system, a fine architecture matched with an efficient organization
to build it, can be its weakness in a time of changing technologies and shifting
market needs. The assumptions and constraints of the present architecture
can become so ingrained in the thinking of participants that options simply
don’t surface. In both situations the problem is largely architectural, as is its
alleviation.

For the innovative company, it is a matter of control of critical architec-
tural features. For the successful first producer, it is a matter of knowing,
well ahead of time, when purposes have changed enough that major re-
architecting may be required. Each situation will be considered in turn.

Controlling the critical features of the architecture

The critical part of the answer to the start-up company’s “what next” quan-
dary is control of the architecture of its product through proprietary own-
ership of its basic features.5 Examples of such features are computer operat-
ing systems, interface characteristics, communication protocols, microchip
configurations, proprietary materials, and unique and expensive manufac-
turing capabilities. Good products, while certainly necessary, are not suffi-
cient. They must also arrive on the market as a steadily improving product
line, one that establishes, de facto, an architectural standard.

Surprisingly, one way to achieve that objective is to use the competition
instead of fighting it. Because success invites competition, it may well be
better for a start-up to make its competition dependent, through licensing,
upon a company-proprietary architecture rather than to have it incentivized
to seek architectural alternatives. Finding architectural alternatives takes
time; but licensing encourages the competition to find new applications, add
peripherals, and develop markets, further strengthening the architectural
base, adding to the source company’s profits and its own development base.6
Heuristically:

Successful architectures are proprietary, but open.*

This strategy was well exemplified by Microsoft in opening and licensing
its personal computer (PC) operating system while Apple refused to do so
for its Macintosh. The resultant widespread cloning of the PC expanded not
only the market as a whole, but Microsoft’s share of it. The Apple share
dropped. The dangers of operating in this kind of open environment, how-
ever, are also illustrated in the case of PC hardware. The PC standard proved

* “Open” here means adaptable, friendly to add-ons, and selectively expandable in capability.
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much more open than IBM intended. Where it was assumed they could
maintain a price advantage through the economies of scale, the advantage
disappeared. The commiditization of the PC also drove down profit margins
until even a large share proved substantially unprofitable, at least for a
company structured as IBM. IBM struggled for years (unsuccessfully) to
move the PC market in a direction that would allow it to retain some degree
of proprietary control and return profits. In contrast, Microsoft and Intel
have struck a tremendously profitable balance between proprietary protec-
tion and openness. The Intel instruction set architecture has been copied, but
no other company has been able to achieve a market share close to Intel’s.
Microsoft has grown both through proprietary and open competition, the
former in operating systems and the latter in application programs.

A different kind of architectural control is exemplified by the Bell tele-
phone system with its technology generated by the Bell Laboratories, its
equipment produced largely by Western Electric, and its architectural stan-
dards maintained by usage and regulation. Others include Xerox in copiers,
Kodak in cameras, Hewlett-Packard in instruments, etc. All of these product
line companies began small, controlled the basic features, and prospered.

Thus, for the innovator the essentials for continued success are not only
a good product, but also the generation, recognition, and control of its basic
architectural features. Without these essentials there may never be a succes-
sor product. With them, many product architectures, as architecturally con-
trolled product lines, have lasted for years following the initial success,
which adds even more meaning to there’s nothing like being the first
success.7

Abandonment of an obsolete architecture

A different risk reduction strategy is needed for the company which has
established and successfully controlled a product line architecture8 and its
market, but is losing out to a successor architecture that is proving to be
better in performance, cost, and/or schedule. There are many ways that this
can happen. Perhaps the purposes that original architecture has satisfied can
be done better in other ways. Typewriters have largely been replaced by
personal computers. Perhaps the conceptual assumptions of the original
architecture no longer hold. Energy may no longer be cheap. Perhaps com-
petitors found a way of bypassing the original architectural controls with a
different architecture. Personal computers destroyed the market for Wang
word processors. The desktop metaphor for personal computers revolution-
ized their user friendliness and their market. And, as a final example, cost
risk considerations precluded building larger and larger spacecraft for the
exploration of the solar system. 

To avoid being superceded architecturally requires a strategy, worked
out well ahead of time, to set to one side or cannibalize that first architecture,
including the organization matched with it, and to take preemptive action to
create a new one. The key move is the well-timed establishment of an
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innovative architecting team, unhindered by past success and capable of
creating a successful replacement. Just such a strategy was undertaken by
Xerox in a remake of the corporation as it saw its copier architecture start
to fade. It thereby redefined itself as “The Document Company.”9

Creating innovative teams
Clearly the personalities of members of any team, particularly an innovative
architecting team, must be compatible. A series of USC Research Reports10

by Jonathan Losk, Tom Pieronek, Kenneth Cureton, and Norman P. Geis,
based on the Myers-Briggs Type Indicator (MBTI), strongly suggests that the
preferred personality type for architecting team membership is NT.11 That
is, members should tend toward systematic and strategic analysis in solving
problems. As Cureton summarizes, “Systems architects are made and not
born, but some people are more equal than others in terms of natural ability
for the systems architecting process, and MBTI seems to be an effective
measure of such natural ability. No single personality type appears to be the
‘perfect’ systems architect, but the INTP personality type often possesses
many of the necessary skills.” 

Their work also shows the need for later including an ENTP, a “field
marshal” or deputy project manager, not only to add some practicality to
the philosophical bent of the INTPs, but to help the architecting team work
smoothly with the teams responsible for building the system itself.

Creating innovative teams is not easy, even if the members work well
together. The start-up company, having little choice, depends on good for-
tune in its recruiting of charter members. The established company, to put
it bluntly, has to be willing to change how it is organized and staffed from
the top, down based almost solely on the conclusions of a presumably
innovative team of “outsiders,” albeit individuals chartered to be such. The
charter is a critical element, not so much in defining new directions as in
defining freedoms, rights of access, constraints, responsibilities, and prerog-
atives for the team. For example, can the team go outside the company for
ideas, membership, and such options as corporate acquisition? To whom
does the team had respond and report, and to whom does it not? Obviously,
the architecting team had better be well designed and managed. Remember,
if the team does not succeed in presenting a new and accepted architecture,
the company may well fail.

One of the more arguable statements about architecting is the one by
Frederick P. Brooks, Jr. and Robert Spinrad that "the best architectures are
the product of a single mind." For modest-sized projects that statement is
reasonable enough, but not for larger ones. The complexity and work load
of creating large, multidisciplinary, technology-driven architectures would
overwhelm any individual. The observation of a single mind is most easily
accommodated by a simple but subtle change from “a single mind” to “a
team of a single mind.” Some would say “of a single vision” composed of
ideas, purposes, concepts, presumptions, and priorities.
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In the simplest case, the single vision would be that of the chief architect
and the team would work to it. For practical as well as team cohesiveness
reasons, the single vision needs to be a shared one. In no system is that more
important than in the entreprenurially motivated one. There will always be
a tension between the more thoughtful architect and the more action-ori-
ented entrepreneur. Fortunately, achieving balance and compromise of their
natural inclinations works in the system’s favor.

An important corollary of the shared vision is that the architecting team
itself, and not just the chief architect, must be seen as creative, communica-
tive, respected, and of a single mind about the system-to-be. Only then can
the team be credible in fulfilling its responsibilities to the entrepreneur, the
builder, the system, and its many stakeholders. Internal power struggles,
basic disagreements on system purpose and values, and advocacies of special
interests can only be damaging to that credibility. 

As Ben Bauermeister, Harry Hillaker, Archie Mills, Bob Spinrad,12 and
other friends have stressed in conversations with the authors, innovative
teams need to be cultural in form, diverse in nature, and almost obsessive
in dedication.

Cultural is meant as a team characterized by informal creativity, easy
interpersonal relationships, trust, and respect — all characteristics necessary
for team efficiency, exchange of ideas, and personal identification with a
shared vision. To identify with a vision, they must deeply believe in it and
in their chief. The members either acknowledge and follow the lead of their
chief or the team disintegrates.

Diversity in specialization is to be expected; it is one of the reasons for
forming a team. Equally important, a balanced diversity of style and pro-
grammatic experience is necessary to assure open-mindedness, to spark
creative thinking in others, and to enliven personal interrelationships. It is
necessary, too, to avoid the “groupthink” of nearly identical members with
the same background, interests, personal style, and devotion to past archi-
tectures and programs. Indeed, team diversity is one of the better protections
against the second-product risks mentioned earlier.

Consequently, an increasingly accepted guideline is that, to be truly
innovative and competitive in today’s world, the team that created and built
a presently successful product is often the best one for its evolution —
but seldom for creating its replacement.

A major challenge for the architect, whether as an individual or as the
leader of a small architecting team, is to maintain dedication and momentum
not only within the team but also within the managerial structure essential
for its support. The vision will need to be continually restated as new par-
ticipants and stakeholders arrive on the scene such as engineers, managers
active and displaced, producers, users, even new clients. Even more difficult,
it will have to be transformed as the system proceeds from a dream to a
concrete entity, to a profit maker, and finally to a quality production. Cultural
collegiality will have to give way to the primacy of the bottom line and,
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finally, to the necessarily bureaucratic discipline of production. Yet the integ-
rity of the vision must never be lost or the system will die.

The role of organizations in architectures, and the architecture of orga-
nizations, is taken up at much greater length by one of the present authors.13

Architecting “revolutionary” systems
A key distinction to be made at this point is between architecting in prece-
dented, or evolutionary, environments, and architecting unprecedented sys-
tems. One of the most notable features of the first book by one of the present
authors14 was an examination of the architectural history of clearly successful
and unprecedented systems. A central observation is that all such systems
have a clearly identifiable architect or small architect team. They were not
conceived by the consensus of a committee. Their basic choices reflect a
unified and coherent vision of one individual or a very small group. Further
reflection, and study by students, has only reinforced this basic conclusion,
while also filling in some of the more subtle details. 

Unprecedented systems have been both purpose- and technology-
driven. In the purpose-driven case the architect has sometimes been part of
the developer’s organization and sometimes not. In the technology-driven
case the architect is almost always in the developer’s organization. This
should be expected as technology-driven systems typically come from inti-
mate knowledge of emerging technology, and someone’s vision of where it
can be applied to advantage.15 This person is typically not a current user,
but is rather a technology developer. It is this case that is the concern of this
section.

The architect has a lead technical role, but this role cannot be properly
expressed in the absence of good project management. Thus the pattern of
a strong duo, project manager and system architect, is also characteristic of
successful systems. In systems of significant complexity it is very difficult
to combine the two roles. A project manager is typically besieged by short-
term problems. The median due date of things on the project manager’s desk
is probably yesterday. In this environment of immediate problems it is
unlikely that a person will be able to devote the serious time to longer-term
thinking and broad communicating that are essential to good architecting.

The most important lesson in revolutionary systems, at least those which
are not inextricably tied to a single mission, is that success is commonly not
found where the original concept thought it would be. The Macintosh com-
puter was a success because of desktop publishing, not the market assumed
in its original rollout (which was as a personal information appliance).
Indeed, desktop publishing did not exist as a significant market when the
Macintosh was introduced. This pattern of new systems becoming successful
because of new applications has been common enough in the computer
industry to have acquired a nickname, the “killer app(lication).” Taken nar-
rowly, a killer app is an application so valuable that it drives the sales of a
particular computer platform. Taken more broadly, a killer app is any new
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system usage so valuable that, by itself, it drives the dissemination of the
system.

One approach to unprecedented systems is to seek the killer application
that can drive the success of a system. A recent noncomputer example that
illustrates the need, and the difficulty, is the search for a killer application
for reusable space launch vehicles. Proponents believe that there is a stable
economic equilibrium with launch costs an order of magnitude lower, and
flight rates around an order of magnitude higher, than currently used. But,
if flight rates increase and space payload costs remain the same, then total
spending on space systems will be far higher. For there to be a justification
for high flight rate launch there has to be an application that will realistically
exploit it.

Various proposals have been floated, including large constellations of
communication satellites, space power generation, and space tourism. If the
cost of robotic payloads was reduced at the same time, their flight rate might
increase without total spending going up so much. The only clear way of
doing that is to move to much larger-scale serial production of space hard-
ware to take advantage of learning curve cost reductions.16 This clearly
indicates a radical change to the architecture not only of launch, but to
satellite design, satellite operations, and probably to space manufacturing
companies as well; and all of these changes need to take place synchronously
for the happy consequence of lowered cost to result. Thus far, this line of
reasoning has not produced success. Launches remain expensive, and the
most efficient course appears to be greater reliability and greater function-
ality per pound of payload.

Sometimes such synchronized changes do occur. The semiconductor
industry has experienced decades of 40% annual growth because such syn-
chronized changes have become ingrained in the structure of the computer
industry. The successful architect exploits what the market demonstrates as
the killer application. The successful innovator exploits the first-to-market
position to take advantage of the market’s demonstration of what it really
wants faster than does the second-to-market player. The successful follower
beats the first-to-market by being able to exploit the market’s demonstration
more quickly.

Systems architecting and basic research
One other relationship should be established, that between architects and
those engaged in basic research and technology development. Each group
can further the interests of the other. The architect can learn without conflict
of interest. The researcher is more likely to become aware of potential spon-
sors and users.

New technologies enable new architectures, though not singly nor by
themselves. Consider solid state electronics, fiber optics, software languages,
and molecular resonance imaging, for starters. Also, innovative architectures
provide the rationale for underwriting research, often at a very basic level.
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Although both innovative architecting and basic research explore the
unknown and unprecedented, there seems to be little early contact between
their respective architects and researchers. The architectures of intelligent
machines, the chaotic aerodynamics of active surfaces, the sociology of intel-
ligent transportation systems, and the resolution of conflict in multimedia
networks are examples of presumably common interests. Universities might
well provide a natural meeting place for seminars, consulting, and the cre-
ation and exchange of tools and techniques. 

New architectures, driven by perceived purposes, sponsor more basic
research and technology development than is generally acknowledged.
Indeed, support for targeted basic research undoubtedly exceeds that moti-
vated by scientific inquiry. Examples abound in communications systems
which sponsor coding theory, weapons systems which sponsor materials
science and electromagnetics, aircraft which sponsor fluid mechanics, and
space systems which sponsor the fields of knowledge acquisition and under-
standing.

It is therefore very much in the mutual interest of professionals in R&D
and systems architecting to know each other well. Architects gain new
options while researchers gain well-motivated support. Enough said.

Heuristics for architecting technology-driven systems
General

• An insight is worth a thousand market surveys.
• Success is defined by the customer, not by the architect.
• In architecting a new program, all the serious mistakes are made in

the first day.
• The most dangerous assumptions are the unstated ones.
• The choice between products may well depend upon which set of

drawbacks the users can handle best.
• As time to delivery decreases, the threat to user utility increases.
• If you think your design is perfect, it’s only because you haven’t

shown it to someone else.
• If you don’t understand the existing system, you can’t be sure you

are building a better one.
• Do the hard parts first.
• Watch out for domain-specific systems. They may become traps in-

stead of useful system niches, especially in an era of rapidly devel-
oping technology.

• The team that created and built a presently successful product is often
the best one for its evolution, but seldom the best one for creating its
replacement. (It may be locked into unstated assumptions that no
longer hold.)

©2000 CRC Press LLC



Specialized

From Morris and Ferguson, 1993:

• Good products are not enough. (Their features need to be owned.) 
• Implementations matter. (They help establish architectural control.)
• Successful architectures are proprietary, but open. (Maintain control

over the key standards, protocols, etc., that characterize them, but
make them available to others who can expand the market to every-
one’s gain.)

From Chapters 2 and 3:

• Use open architectures. You will need them once the market starts to
respond.

Summary
Technology-driven, builder-architected systems, with their greater uncer-
tainty of customer acceptance, encounter greater architectural risks than
those that are purpose-driven. Risks can be reduced by the careful inclusion
of options, the structuring of innovative teams, and the application of heu-
ristics found useful elsewhere. At the same time, they have lessons to teach
in the control of critical system features and the response to competition
enabled by new technologies.

Exercises

1. The architect can have one of three relationships to the builder and
client. The architect can be a third party, can be the builder, or can be
the client. What are the advantages and disadvantages of each rela-
tionship? For what type of system is one of the three relationships
necessary?

2. In a system familiar to you, discuss how the architecture can allow
for options to respond to changes in client demands. Discuss the pros
and cons of product vs. product-line architecture as strategies in re-
sponding to the need for options. Find examples among systems
familiar to you.

3. Architects must be employed by builders in commercially marketed
systems because many customers are unwilling to sponsor long-term
development; they purchase systems after evaluating the finished
product according to their then perceived needs. But placing the
architect in the builder’s organization will tend to dilute the indepen-
dence needed by the architect. What organizational approaches can
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help to maintain independence while also meeting the needs of the
builder organization?

4. The most difficult type of technology-driven system is one that does
not address any existing market. Examine the history of both success-
ful and failed systems of this type. What lessons can be extracted from
them?
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chapter four

Manufacturing systems

Introduction: the manufacturing domain
Although manufacturing is often treated as if it were but one step in the
development of a product, it is also a major system in itself. It has its own
architecture.1 It has a system function that its elements cannot perform by
themselves: making other things with machines. And it has an acquisition
waterfall for its construction quite comparable to those of its products.

From an architectural point of view, manufacturing has long been a quiet
field. Such changes as were required were largely a matter of continual,
measurable, incremental improvement — a step at a time on a stable archi-
tectural base. Though companies came and went, it took decades to see a
major change in its members. The percentage of sales devoted to research
and advanced development for manufacturing, per se, was small. The need
was to make the classical manufacturing architecture more effective; that is,
to evolve and engineer it. 

A decade or so ago the world that manufacturing had supported for
almost a century changed, and at a global scale. Driven by new technologies
in global communications, transportation, sources, markets, and finance,
global manufacturing became practical and then, shortly thereafter, domi-
nant. It quickly became clear that qualitative changes was required in man-
ufacturing architectures if global competition was to be met. In the order of
conception, the architectural innovations were ultraquality,2 dynamic man-
ufacturing,3 lean production,4 and “flexible manufacturing.”* The results to
date, demonstrated first by the Japanese, have greatly increased profits and
market share, and sharply decreased inventory and time-to-market. Each of
these innovations will be presented in turn.

Even so, rapid change is still underway. As seen on the manufacturing
floor, manufacturing research as such has yet to have a widespread effect.
Real-time software is still a rarity. Trend instrumentation, self-diagnosis, and
self-correction, particularly for ultraquality systems, are far from common-

* Producing different products on demand on the same manufacturing line.
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place. Thus far, the most sensitive tool for ultraquality is the failure of the
product being manufactured.

Architectural innovations in manufacturing
Ultraquality systems

At the risk of oversimplification, a common perception of quality is that
quality costs money; that is, that quality is a tradeoff against cost and/or
profit. Not coincidentally, there is an accounting category called “cost of
quality.” A telling illustration of this perception is the “DeSoto story.” As the
story goes, a young engineer at a DeSoto automobile manufacturing plant
went to his boss with a bright idea on how to make the DeSoto a more
reliable automobile. The boss’s reply: “Forget it, kid. If it were more reliable
it would last more years and we would sell fewer of them. It’s called planned
obsolescence.” DeSoto is no longer in business, but the perception remains
in the minds of many manufacturers of many products. 

The difficulty with this perception is partly traceable to the two different
aspects of quality. The first is quality associated with features like leather
seats and air conditioning. Yes, those features cost money, but the buyer
perceives them as value added and the seller almost always makes money
on them. The other aspect of quality is absence of defects. As it has now
been shown, absence of defects also makes money, and for both seller and
buyer, through reductions in inventory, warranty costs, repairs, documenta-
tion, testing, and time-to-market provided that the level of product quality is
high enough* and that the whole development and production process is
architected at that high level. 

To understand why absence of defects makes money, imagine a faultless
process that produces a product with defects so rare that it is impractical to
measure them; that is, none are anticipated within the lifetime of the product.
Testing can be reduced to the minimum required to certify system-level
performance of the first unit. Delays and their costs can be limited to those
encountered during development; if and when later defects occur, they can
be promptly diagnosed and permanently eliminated. “Spares” inventory,
detailed parts histories, and statistical quality control can be almost nonex-
istent. First-pass manufacturing yield can be almost 100% instead of today’s
highly disruptive 20-70%. Service in the field is little more than replacing
failed units, free. 

The only practical measurement of ultraquality would then be an end
system-level test of the product itself. Attempting to measure defects at any
subsystem level would be a waste of time and money — defects would have
to be too rare to determine with high confidence. Redundancy and fault-
tolerant designs would be unnecessary. Indeed, they would be impractical

* Roughly less than 1% per year rate of failure at the system level regardless of system size.
The failure rate for subsystems or elements clearly must be much less.
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because, without an expectation of a specific failure (which then should be
fixed), protection against rare and unspecified defects is not cost effective.

To some readers, this ultraquality level may appear to be hopelessly
unrealistic. Suffice to say that it has been approached for all practical pur-
poses. For decades, no properly built unmanned satellite or spacecraft failed
because of a defect known before launch (any defect would have been fixed
beforehand). Microprocessors with millions of active elements, sold in the
millions, now outlast the computers for which they were built. Like the
satellites, they become technically and financially obsolete long before they
fail. Television sets are produced with a production line yield of over 99%,
far better than the 50% yield of a decade ago, with a major improvement in
cost, productivity, and profit.

Today’s challenge, then, is to achieve and maintain such ultraquality
levels even as systems become more complex. Techniques have been devel-
oped which certainly help.* More recently, two more techniques have been
demonstrated that are particularly applicable to manufacturing. 

1. Everyone in the production line is both a customer and a supplier,
a customer for the preceding worker and a supplier for the next. Its
effect is to place quality assurance where it is most needed, at the
source. 

2. The Five Whys, a diagnostic procedure for finding the basic cause of
a defect or discrepancy. Why did this occur? They why did that, in
turn, occur. Then, why that?, and so on until the offending causes are
discovered and eliminated. 

To these techniques can be added a relatively new understanding: some
of the worst failures are system failures; that is, they come from the inter-
action of subsystem deficiencies which of themselves do not produce an end
system failure, but together can and do. Four catastrophic civil space system
failures were of this kind: Apollo 1, Apollo 13, Challenger, and the Hubble
Telescope. For Tom Clancy buffs, just such a failure almost caused World
War III in his Debt of Honor. In all these cases, had any one of the deficiencies
not occurred, the near catastrophic end result could not have occurred. That
is, though each deficiency was necessary, none were sufficient for end failure.
As an admonition to future failure review boards, until a diagnosis is made
that indicates that the set of presumed causes are both necessary and suffi-

* Rechtin, E., Systems Architecting, Creating & Building Complex Systems, Prentice-Hall, Englewood
Cliffs, NJ, 1991, Chapter 8, 160-187. One technique mentioned there — fault tolerance through
redundancy — has proved to be less desirable than proponents had hoped. Because fault-
tolerant designs “hide” single faults by working around them, they accumulate until an overall
system failure occurs. Diagnostics then become very much more difficult. Symptoms are inter-
twined. Certification of complete repair cannot be guaranteed because successful-but-partial
operation again hides undetected (tolerated) faults. The problem is most evident in servicing
modern, microprocessor-rich automobile controls. The heuristic still holds, fault avoidance is
preferable to fault tolerance in system design. 
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cient — and that no other such set exists — the discovery-and-fix process is
incomplete and ultraquality is not assured.

Successful ultraquality has indeed been achieved, but there is a price
that must be paid. Should ultraquality not be produced at any point in the
whole production process, the process may collapse. Therefore, when some-
thing does go wrong, it must be fixed immediately; there are no cushions of
inventory, built-in holds, full-time expertise, or planned workarounds.
Because strikes and boycotts can have instantaneous effects, employee, cus-
tomer, and management understanding and satisfaction is essential. Pride
in work and dedication to a common cause can be of special advantage, as
has been seen in the accomplishments of the zero defect programs of World
War II, the American Apollo lunar landing program, and the Japanese drive
to world-class products. 

In a sense, ultraquality-built systems are fine-tuned to near perfection
with all the risks thereof. Just how much of a cushion or insurance policy is
needed for a particular system is an important value judgment that the
architect must obtain from the client, the earlier the better. That judgment
has strong consequences in the architecture of the manufacturing system.
Clearly, then, ultraquality architectures are very different from the statistical
quality assurance architectures of only a few years ago.*

Most important for what follows, it is unlikely that either lean produc-
tion or flexible manufacturing can be made competitive at much less than
ultraquality levels. 

Dynamic manufacturing systems

The second architectural change in manufacturing systems is from compar-
atively static configurations to dynamic, virtual real-time, ones. Two basic
architectural concepts now become much more important. The first concerns
intersecting waterfalls and the second, feedback systems.

Intersecting waterfalls
The development of a manufacturing system can be represented as a separate
waterfall, distinct from, and intersecting with, that of the product it makes.
Figure 4.1 depicts the two waterfalls, the process (manufacturing) diagonally
and the product vertically intersecting at the time and point of production.
The manufacturing one is typically longer in time, often decades, and con-
tains more steps than the relatively shorter product sequence (months to
years) and may end quite differently (the plant is shut down and demol-
ished). Sketching the product development and the manufacturing process

* One of the authors, a veteran of the space business, recently visited two different manufac-
turing plants and correctly predicted the plant yields (acceptance vs. start rates) by simply
looking at the floors and at the titles (not content) and locations of a few performance charts
on the walls. In the ultraquality case the floors were painted white, the charts featured days-
since-last-defect instead of running average defect rates, and the charts were placed at the exits
of each work area. Details, but indicative.
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as two intersecting waterfalls helps emphasize the fact that manufacturing
has its own steps, time scales, needs, and priorities distinct from those of
the product waterfall. It also implies the problems its systems architect will
face in maintaining system integrity, in committing well ahead to manufac-
ture products not yet designed, and in adjusting to comparatively abrupt
changes in product mix and type. A notably serious problem is managing
the introduction of new technologies, safely and profitably, into an inherently
high inertia operation. 

There are other differences. Manufacturing certification must begin well
before product certification or the former will preclude the latter; in any case,
the two must interact. The product equivalent of plant demolition, not shown
in the figure, is recycling, both now matters of national law in Europe. Like
certification, demolition is important to plan early, given its collateral human
costs in the manufacturing sector. The effects of environmental regulations,
labor contracts, redistribution of useable resources, retraining, right-sizing
of management, and continuing support of the customers are only a few of
the manufacturing issues to be resolved — well before the profits are
exhausted. 

Theoretically if not explicitly, these intersecting waterfalls have existed
since the beginning of mass production; but not until recently have they
been perceived as having equal status, particularly in the U.S. Belatedly, that
perception is changing, driven in large part by the establishment of global
manufacturing — clearly not the same system as a wholly owned shop in
one’s own backyard. The change is magnified by the widespread use of
sophisticated software in manufacturing, a boon in managing inventory but

Figure 4.1
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a costly burden in reactive process control.5 Predictably, software for manu-
facturing process and control, more than any element of manufacturing, will
determine the practicality of flexible manufacturing. As a point in proof,
Hayes, Wheelright, and Clark6 point out that a change in the architecture of
(even) a mass production plant, particularly in the software for process
control, can make dramatic changes in the capabilities of the plant without
changing either the machinery or layout. 

The development of manufacturing system software adds yet another
production track. The natural development process for software generally
follows a spiral,* certainly not a conventional waterfall, cycling over and
over through functions, form, code (building), and test. The Figure 4.2 soft-
ware spiral is typical. It is partially shaded to indicate that one cycle has
been completed with at least one more to go before final test and use. One
reason for such a departure from the conventional waterfall is that software,
as such, requires almost no manufacturing, making the waterfall model of
little use as a descriptor.** The new challenge is to synchronize the stepped
waterfalls and the repeating spiral processes of software-intensive systems.
One of the most efficient techniques is through the use of stable intermediate
forms,7 combining software and hardware into partial but working precur-
sors to the final system. Their important feature is that they are stable con-
figurations; that is, they are reproducible, well-documented, progressively
refined baselines. In other words, they are identifiable architectural way-
points and must be treated as such. They can also act as operationally useful
configurations,*** built-in “holds” allowing lagging elements to catch up, or
parts of strategies for risk reduction as suggested in Chapter 3.

The spiral-to-circle model
Visualizing the synchronization technique for the intersecting waterfalls and
spirals of Figure 4.2 can be made simpler by modifying the spiral so that it
remains from time to time in stable concentric circles on the four-quadrant
process diagram. Figure 4.3 shows a typical development from a starting
point in the function quadrant cycling through all quadrants three times —
typical of the conceptualization phase — to the first intermediate form. There
the development may stay for a while, changing only slightly, until new
functions call for the second form, say an operational prototype. In Air Force
procurement, that might be a “fly-before-buy” form. In space systems, it
might be a budget-constrained “operational prototype,” which is actually

* See also Chapter 2.
** Efforts to represent the manufacturing and product processes as spirals have been comparably
unsuccessful. Given the need to order long lead time items, to “cut metal” at some point, and
to write off the cost of multiple rapid prototypes, the waterfall is the depiction of choice.
*** Many commanders of the Air Force Space and Missiles Division have insisted that all
prototypes and interim configurations have at least some operational utility, if only to help
increase the acceptance in the field once the final configuration is delivered. In practice, field
tests of interim configurations almost always clarify if not reorder prior value judgments of
what is most important to the end user in what the system can offer.

©2000 CRC Press LLC



flown. In one program, it turned out to be the only system flown. But, to
continue, the final form is gained, in this illustration, by way of a complete
four-quadrant cycle.

The spiral-to-circle model can show other histories; for example, a failure
to spiral to the next form, with a retreat to the preceding one, possibly with
less ambitious goals, a transition to a still greater circle in a continuing
evolution, or an abandonment of these particular forms with a restart near
the origin. 

Synchronization can also be helped by recognizing that cycling also goes
on in the multistep waterfall model, except that it is depicted as feedback from
one phase to one or more preceding ones. It would be quite equivalent to
software quadrant spiraling if all waterfall feedback returned to the beginning
of the waterfall; that is, to the system’s initial purposes and functions, and
from there down the waterfall again. If truly major changes are called for, the
impact can be costly, of course, in the short run. The impact in the long run
might be cost effective, but few hardware managers are willing to invest.

The circle-to-spiral model for software-intensive systems in effect con-
tains both the expanding-function concept of software and the step-wise
character of the waterfall. It also helps to understand what and when hard-
ware and software functions are needed in order to satisfy requirements by
the other part of the system. For example, a stable intermediate form of
software should arrive when a stable, working form of hardware arrives that
needs that software, and vice versa. 

It is important to recognize that this model, with its cross-project syn-
chronizations requirement, is notably different from models of procurements

Figure 4.2
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in which hardware and software developments can be relatively indepen-
dent of each other. In the spiral-to-circle model, the intermediate forms, both
software and hardware, must be relatively unchanging and bug-free. A
software routine that never quite settles down or that depends upon the user
to find its flaws is a threat, not a help, in software-intensive systems pro-
curement. A hardware element that is intended to be replaced with a “better
and faster” one later is hardly better. Too many subsequent decisions may
unknowingly rest on what may turn out to be anomalous or misunderstood
behavior of such elements in system test.

To close this section, although this model may be relatively new, the
process that it describes is not. Stable intermediate forms, blocks (I, II, etc.),
or “test articles,” as they are called, are built into many system contracts and
perform as intended. Yet, there remains a serious gap between most hard-
ware and software developers in their understanding of each other and their

Figure 4.3
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joint venture. As the expression goes: “These guys just don’t talk to each
other.” The modified spiral model should help both partners bridge that gap,
to accept the reasons both for cycling and for steps, and to recognize that
neither acquisition process can succeed without the success of the other.

There should be no illusion that the new challenge will be easy to meet.
Intermediate software forms will have to enable hardware phases at specified
milestones, not just satisfy separate software engineering needs. The forms
must be stable, capable of holding at that point indefinitely, and practical as
a stopping point in the acquisition process if necessary. Intermediate hard-
ware architectures must have sufficient flexibility to accommodate changes
in the software as well as in the hardware. And, finally, the architects and
managers will have a continuing challenge in resynchronizing the several
processes so that they neither fall behind nor get too far ahead. Well-archi-
tected intermediate stable forms and milestones will be essential.

Concurrent engineering 
The intersecting waterfall model in Figure 4.2 also helps identify the source
of some of the inherent problems in concurrent (simultaneous, parallel)
engineering in which product designers and manufacturing engineers work
together to create a well-built product. Concurrent engineering in practice,
however, has proven to be more than modifying designs for manufactura-
bility. However defined, it is confronted with a fundamental problem, evi-
dent from Figure 4.2; namely, coordinating the two intersecting waterfalls
and the spirals, each with different time scales, priorities, hardware, soft-
ware, and profit-and-loss criteria. Because each track is relatively indepen-
dent of the others, the incentives for each are to optimize locally even if
doing so results in an impact on another track or on the end product. After
all, it is a human and organizational objective to solve one’s own problems,
to have authority reasonably commensurate with responsibilities, and to be
successful in one’s own right. Unfortunately, this objective forces even minor
technical disagreements to higher, enterprise management where consider-
ations other than just system performance come into play.

A typical example: A communications spacecraft de-
sign was proceeding concurrently in engineering and
manufacturing until the question came up of the space-
craft antenna size. The communications engineering
department believed that a 14-ft diameter was needed
while the manufacturing department insisted that 10
feet was the practical limit. The difference in system
performance was a factor of two in communications
capability and revenue. The reason for the limit, it
turned out, was that the manufacturing department
had a first-rate subcontractor with all the equipment
needed to build an excellent antenna, but no larger
than 10 feet. To go larger would cause a measurable
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manufacturing cost overrun. The manufacturing man-
ager was adamant about staying within his budget,
having taken severe criticism for an overrun in the
previous project. In any case, the added communica-
tions revenue gain was far larger than the cost of re-
equipping the subcontractor. Lacking a systems archi-
tect, the departments had little choice but to escalate
the argument to a higher level where the larger anten-
na was eventually chosen and the manufacturing bud-
get increased slightly. The design proceeded normally
until software engineers wanted to add more memory
well after manufacturing had invested heavily in the
original computer hardware design. The argument es-
calated, valuable time was lost, department preroga-
tives were again at stake … and so it went.

This example is not uncommon. A useful management improvement
would have been to set up a trusted, architect-led team to keep balancing
the system as a whole within broad top-management guidelines of cost,
performance, risk, and schedule. 

If so established, the architectural team’s membership should include a
corporate-level (or “enterprise") architect, the product architect, the manu-
facturing architect, and a few specialists in system-critical elements and no
more.8 Such a structure does exist implicitly in some major companies,
though seldom with the formal charter, role, and responsibilities of systems
architecting.

Feedback systems
Manufacturers have long used feedback to better respond to change. Feed-
back from the customer has been, and is, used directly to maintain manu-
facturing quality, and indirectly to accommodate changes in design. Com-
parably important are paths from sales to manufacturing and from
manufacturing to engineering. 

What is new is that the pace has changed. Multiyear is now yearly, yearly
is now monthly, monthly is now daily, and daily, especially for ultraquality
systems, has become hourly if not sooner. What was a temporary slowdown
is now a serious delay. What used to affect only adjacent sectors can now
affect the whole. What used to be the province of planners is now a matter
of real-time operations.

Consequently, accustomed delays in making design changes, correcting
supply problems, responding to customer complaints, introducing new
products, and reacting to competitors’ actions and the like were no longer
acceptable. The partner to ultraquality in achieving global competitiveness
was to counter the delays by anticipating them. In other words, to use
anticipatory feedback in as close to real-time as practical. The most dramatic
industrial example to date has been in lean production9 in which feedback
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to suppliers, coupled with ultraquality techniques, cut the costs of inventory
in half and resulted in across-the-board competitive advantage in virtually
all business parameters. More recently, criteria for certification, or those of
its predecessor, quality assurance, is routinely fed back to conceptual design
and engineering — one more recognition that quality must be designed in,
not tested in.

A key factor in the design of any real-time feedback system is loop delay,
the time it takes for a change to affect the system “loop" as a whole. In a
feedback system, delay is countered by anticipation based on anticipated
events (like a failure) or on a trend derived from the integration of past
information. The design of the anticipation, or “correction," mechanism,
usually the feedback paths, is crucial. The system as a whole can go sluggish
on the one hand or oscillatory on the other. Symptoms are inventory chaos,
unscheduled overtime, share price volatility, exasperated sales forces, frus-
trated suppliers, and, worst of all, departing long-time customers. Design
questions are: What is measured? How is it processed? Where is it sent?
And, of course, to what purpose? 

Properly designed, feedback control systems determine transient and
steady-state performance, reduce delays and resonances, alleviate nonlinear-
ities in the production process, help control product quality, minimize inven-
tory, and alleviate nonlinearities in the production process. By way of expla-
nation, in nonlinear systems, two otherwise independent input changes
interact with each other to produce effects different from the sum of the
effects of each separately. Understandably, the end results can be confusing
if not catastrophic. An example is a negotiated reduction in wages followed
immediately by an increase in executive wages. The combination results in
a strike; either alone would not.

A second key parameter, the resonance time constant, is a measure of
the frequency at which the system or several of its elements tries to oscillate
or cycle. Resonances are created in almost every feedback system. The more
feedback paths, the more resonances. The business cycle, related to inventory
cycling, is one such resonance. Resonances, internal and external, can interact
to the point of violent, nonlinear oscillation and destruction, particularly if
they have the same or related resonant frequencies. Consequently, a warning:
avoid creating the same resonance time constant in more than one location
in a (production) system.

Delay and resonance times, separately and together, are subject to
design. In manufacturing systems, the factors that determine these param-
eters include inventory size, inventory replacement capacity, information
acquisition and processing times, fabrication times, supplier capacity, and
management response times. All can have a strong individual and collective
influence on such overall system time responses as time to market, material
and information flow rates, inventory replacement rate, model change rate,
and employee turnover rate. Few, if any, of these factors can be chosen or
designed independently of the rest, especially in complex feedback systems.
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Fortunately, there are powerful tools for feedback system design. They
include linear transform theory, transient analysis, discrete event mathemat-
ics, fuzzy thinking, and some selected nonlinear and time-variant design
methods. The properties of at least simple linear systems designed by these
techniques can be simulated and adjusted easily. A certain intuition can be
developed based upon long experience with them. For example:

• Behavior with feedback can be very different from behavior without it. 
Positive example: Provide inventory managers with timely sales in-
formation and drastically reduce inventory costs. Negative example:
Ignore customer feedback and drown in unused inventory. 

• Feedback works. However, the design of the feedback path is critical. Indeed,
in the case of strong feedback, its design can be more important than that of
the forward path. 
Positive example: Customer feedback needs to be supplemented by
anticipatory projections of economic trends and of competitors’ re-
sponses to one’s own strategies and actions to avoid delays and sur-
prises. Negative examples: If feedback signals are “out of step" or of
the wrong polarity, the system will oscillate, if not go completely out
of control. Response that is too little, too late is often worse than no
response at all.

• Strong feedback can compensate for many known vagaries, even nonlinear-
ities in the forward path, but it does so “at the margin.” 
Example: Production lines can be very precisely controlled around
their operating points; that is, once a desired operating point is
reached, tight control will maintain it, but off that point or on the way
to or from it (e.g., start up, synchronization,10 and shut down) off-
optimum behavior is likely. Example: Just in Time response works
well for steady flow and constant volume. It can oscillate if flow is
intermittent and volume is small.

• Feedback systems will inherently resist unplanned or unanticipated change,
whether internal or external. Satisfactory responses to anticipated
changes, however, can usually be assured. In any case, the response will
last at least one time constant (cycle time) of the system. These properties
provide stability against disruption. On the other hand, abrupt man-
dates, however necessary, will be resisted and the end results may be
considerably different in magnitude and timing from what advocates
of the change anticipated. 
Example: Social systems, incentive programs, and political systems
notoriously “readjust" to their own advantage when change is man-
dated. The resultant system behavior is usually less than, later than,
and modified from that anticipated.

• To make a major change in performance of a presently stable system is likely
to require a number of changes in the overall system design. 
Example: The change from mass production to lean production to
flexible production11 and the use of robots and high technology.
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Not all systems are linear, however. As a warning against overdepen-
dence on linear-derived intuition, typical characteristics of nonlinear systems
are:

• In general, no two systems of different nonlinearity behave in exactly the
same way.

• Introducing changes into a nonlinear system will produce different (and
probably unexpected) results if they are introduced separately than if they
are introduced together. 

• Introducing even very small changes in input magnitude can produce very
different consequences even though all components and processes are deter-
ministic. 
Example: Chaotic behavior (noiselike but with underlying structure)
close to system limits is such a phenomenon. Example: When the
phone system is saturated with calls and goes chaotic, the planned
strategy is to cut off all calls to a particular sector (e.g., California after
an earthquake) or revert back to the simplest mode possible (first
come, first serve). Sophisticated routing is simply abandoned as it is
part of the problem. Example: When a computer abruptly becomes
erratic as it runs out of memory, the simplest and usually successful
technique is to turn it off and start it up again (reboot), hoping that
not too much material has been lost.

• Noise and extraneous signals irreversibly intermix with and alter normal,
intended ones, generally with deleterious results. 
Example: Modification of feedback and control signals is equivalent
to modifying system behavior; that is, changing its transient and
steady-state behavior. Nonlinear systems are therefore particularly
vulnerable to purposeful opposition (jamming, disinformation, over-
loading). 

• Creating nonlinear systems is of higher risk than creating well-understood,
linear ones. The risk is less that the nonlinear systems will fail under
carefully framed conditions than that they will behave strangely oth-
erwise. 
Example: In the ultraquality spacecraft business there is a heuristic:
If you can’t analyze it, don’t build it — an admonition against un-
necessarily nonlinear feedback systems. 

The two most common approaches to nonlinearity are first, when non-
linearities are both unavoidable and undesirable, minimize their effect on
end system behavior through feedback and tight control of operating param-
eters over a limited operating region. Second, when nonlinearity can improve
performance as in discrete and fuzzy control systems, be sure to model and
simulate performance outside the normal operating range to avoid “non-
intuitive” behavior.

The architectural and analytic difficulties faced by modern manufactur-
ing feedback systems are that they are neither simple nor necessarily linear.
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They are unavoidably complex, probably contain some nonlinearities (lim-
iters and fixed time delays), are multiply-interconnected, and are subject to
sometimes drastic external disturbances, not the least of which are sudden
design changes and shifts in public perception. Their architectures must
therefore be robust and yet flexible. Though inherently complex, they must
be simple enough to understand and modify at the system level without too
many unexpected consequences. In short, they are likely to be prime candi-
dates for the heuristic and modeling techniques of systems architecting.

Lean production 
One of the most influential books on manufacturing in recent years is the
1990 best seller, The Machine that Changed the World, The Story of Lean Produc-
tion.12 Although the focus of this extensive survey and study was on auto-
mobile production in Japan, the U.S., and Europe, its conclusions are appli-
cable to manufacturing systems in general; particularly the concepts of
quality and feedback. A 1994 follow-up book, Comeback, The Fall & Rise of
the American Automobile Industry,13 tells the story of the American response
and the lessons learned from it, though calling it a “comeback” may have
been premature. The story of lean production systems is by no means neat
and orderly. Although the principles can be traced back to 1960, effective
implementation took decades. Lean production certainly did not emerge full-
blown. Ideas and developments came from many sources, some prematurely.
Credits were sometimes misattributed. Many contributors were very old by
the time their ideas were widely understood and applied. Quality was some-
times seen as an end result instead of as a prerequisite for any change. The
remarkable fact that virtually every critical parameter improved by at least
20%, if not 50%,14 does not seem to have been anticipated. Then, within a
few years, everything worked. But when others attempted to adopt the
process, they often failed. Why?

One way to answer such questions is to diagram the lean production
process from an architectural perspective. Figure 4.4 is an architect’s sketch
of the lean production waterfall derived from the texts of the just-mentioned
books, highlighting (bold facing) its nonclassical features and strengthening
its classical ones.* The most apparent feature is the number and strength of
its feedback paths. Two are especially characteristic of lean production: the
supplier waterfall loop and the customer-sales-delivery loop. Next evident
is the Quality Policies box, crucial not only to high quality but to the prof-
itable and proper operation of later steps, Just in Time inventory, rework,
and implicit warranties. Quality policies are active elements in the sequence
of steps, are a step through which all subsequent orders and specifications

* Strictly speaking, though the authors of the lean production books did not mention it, an
architect’s perspective should also include the intersecting product waterfalls and software
spirals. Interestingly, because it seems to be true for all successful systems, it is possible to find
where and by whom systems architecting was performed. Two of the more famous automotive
production architects were Taiichi Ohno, the pioneer of the Toyota Motor Company Production
System, and Yoshiki Yamasaki, head of automobile production at Mazda.
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must pass, and are as affected by its feedback input as any other step. That
is, policies must change with time, circumstance, technology, product
change, and process imperatives.

Research and development (R&D) is not “in the loop,” but instead is
treated as one supplier of possibilities, among many, including one’s com-
petitors’ R&D. As described in the 1990 study, R&D is not a driver, though
it wouldn’t be surprising if its future role were different. Strong customer
feedback, in contrast, is very much within the loop, making the loop respon-
sive to customer needs at several key points. Manufacturing feedback to

Figure 4.4
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suppliers is also a short path, in contrast with the standoff posture of much
U.S. procurement. 

The success of lean production has induced mass producers to copy
many of its features, not always successfully. Several reasons for lack of
success are apparent from the figure. If the policy box does not implement
ultraquality, little can be expected from changes further downstream, regard-
less of how much they ought to be able to contribute. Just in Time inventory
is an example. Low-quality supply mandates a cushion of inventory roughly
proportional to the defect rate; shifting that inventory from the manufacturer
back to the supplier without a simultaneous quality upgrade simply
increases transportation and financing costs. To decrease inventory, decrease
the defect rate, then apply the coordination principles of Just in Time, not
before.

Another reason for limited success in converting piecemeal to lean pro-
duction is that any well-operated feedback system, including those used in
classical mass production, will resist changes in the forward (waterfall) path.
The “loop” will attempt to self-correct, and it will take at least one loop time
constant before all the effects can be seen or even known. To illustrate, if
supply inventory is reduced, what is the effect on sales and service inven-
tory? If customer feedback to the manufacturing line is aggressively sought,
as it is in Japan, what is the effect on time-to-market for new product designs? 

A serious question raised in both books is how to convert mass produc-
tion systems into lean production systems. It is not, as the name “lean" might
imply, a mass production system with the “fat" of inventory, middle man-
agement, screening, and documentation, taken out. It is to recognize lean
production as a different architecture based on different priorities and inter-
relationships. How, then, to begin the conversion? What is both necessary
and sufficient? What can be retained?

The one and only place to begin conversion, given the nature of feedback
systems, is in the Quality Policies step. In lean production, quality is not a
production result determined post-production and post-test, it is a prereq-
uisite policy imperative. Indeed, Japanese innovators experienced years of
frustration when TQM, JIT, and the Taguchi methods at first seemed to do
very little. The level of quality essential for these methods to work had not
yet been reached. When it was, the whole system virtually snapped into
place with results that became famous. Even more important for other com-
panies, unless their quality levels are high enough, even though all the
foregoing methods are in place, the famous results will not — and cannot
— happen. 

Conversely, at an only slightly lower level of quality, lean systems spo-
radically face at least temporary collapse.15 As a speculation, there appears
to be a direct correlation between how close to the cliff of collapse the system
operates and the competitive advantage it enjoys. Backing off from the cliff
would seem to decrease its competitive edge, yet getting too close risks
imminent collapse: line shutdown, transportation jam-up, short-fuse cus-
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tomer anger, and collateral damage to suppliers and customers for whom
the product is an element of a still larger system production.

To summarize, lean production is an ultraquality, dynamic feedback
system inherently susceptible to any reduction in quality. It depends upon
well-designed, multiple feedback. Given ultraquality standards, lean pro-
duction arguably is less complex, simpler, and more efficient than mass
production; and, by its very nature, it is extraordinarily, fiercely, competitive. 

Flexible manufacturing
Flexible manufacturing is the capability of sequentially making more than
one product on the same production line. In its most common present-day
form, it customizes products for individual customers, more or less on
demand, by assembling different modules (options) on a common base (plat-
form). Individually tailored automobiles, for example, have been coming
down production lines for years. But with one out of three or even one out
of ten units having to be sent back or taken out of a production stream,
flexible manufacturing in the past has been costly in inventory, complex in
operation, and high-priced per option compared to all-of-a-kind production. 

What has changed is customer demands and expectations, especially in
consumer products. Largely because of technological innovation, more capa-
bility for less cost now controls purchase rate rather than wearout and
increasing defect rate. An interesting epilog to the DeSoto story.* One con-
sequence of the change is more models per year with fewer units per model,
the higher costs per unit being offset by use of techniques such as preplanned
product improvement, standardization of interfaces and protocols, and lean
production methods. 

A natural architecture for the flexible manufacturing of complex prod-
ucts would be an extension of lean production with its imperatives — addi-
tional feedback paths and ultraquality-produced simplicity — and an imper-
ative all its own, human-like information command and control.

At its core, flexible manufacturing involves the real-time interaction of
a production waterfall with multiple product waterfalls. Lacking an archi-
tectural change from lean production, however, the resultant multiple infor-
mation flows could overwhelm conventional control systems. The problem
is less that of gathering data than of condensing it. That suggests that flexible
manufacturing will need judgmental, multiple-path control analogous to
that of an air traffic controller in the new “free flight” regime. Whether the
resultant architecture will be fuzzy, associative, neural, heuristic, or largely
human is arguable.

To simplify the flexible manufacturing problem to something more man-
ageable, most companies today would limit the flexibility to a product line
that is forward- and backward-compatible, uses similar if not identical mod-

* Parenthetically, the Japanese countered the automobile obsolescence problem by quadrennial
government inspections so rigorous that it was often less expensive to turn a car in and purchase
a new one than to bring the old one up to government standards. Womack, et al., 1990, 62.

©2000 CRC Press LLC



ules, keeps to the same manufacturing standards, and is planned to be in
business long enough to write off the cost of the facility out of product line
profits. In brief, production would be limited to products having a single
basic architecture; for example, producing either Macintosh computers, Hita-
chi TV sets, or Motorola cellular telephones, but not all three on demand on
the same production line. 

Even that configuration is complex architecturally. To illustrate: a central
issue in product line design is where in the family of products, from low-
to high-end, to optimize. Too high in the series and the low end is needlessly
costly; too low and the high end adds too little value. A related issue arises
in the companion manufacturing system. Too much capability and its over-
head is too high; too little, and it sacrifices profit to specialty suppliers.

Another extension from lean production to flexible manufacturing is
much closer coordination between the design and development of the prod-
uct line and the design and development of its manufacturing system. Failure
to achieve this coordination, as illustrated by the problems of introducing
robots into manufacturing, can be warehouses of unopened crates of robots
and in-work products that can’t be completed as designed. Clearly, the
product and its manufacturing system must match. More specifically, their
time constants, transient responses, and product-to-machine interfaces must
match, recognizing that any manufacturing constraint means a product con-
straint, and vice versa. 

As suggested earlier, the key technological innovation is likely to be the
architecture of the joint information system.16 In that connection, one of the
greatest determinants of the information system’s size, speed, and resolution
is the quality of the end product and the yield of its manufacturing process;
that is, their defect rates. The higher these defect rates, the greater the size,
cost, complexity, and precision of the information system that will be needed
to find and eliminate them quickly. 

Another strong determinant of information system capacity is piece-part
count, another factor dependent on the match of product and manufacturing
techniques. Mechanical engineers have known for years that whenever pos-
sible, replace a complicated assembly of parts with a single, specialized piece.
Nowhere is the advantage of piece-part reduction as evident as in the con-
tinuing substitution of more and more high-capacity microprocessors for
their lower-capacity predecessors. Remarkably, this substitution, for approx-
imately the same cost, also decreases the defect rate per computational
operation.

Also, especially for product lines, the fewer different parts from model
to model, the better, as long as that commonality doesn’t decrease system
capability unduly. Once again, there is a close correlation between reduced
defect rate, reduced information processing, reduced inventory, and reduced
complexity — all by design.

Looking further into the future, an extension of a lean production archi-
tecture is not the only possibility for flexible manufacturing. It is possible
that flexible manufacturing could take quite a different architectural turn
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based on a different set of priorities. Is ultraquality production really neces-
sary for simple, low cost, limited warranty products made largely from
commercial off-the-shelf (COTS) units; e.g., microprocessors and flat screens?
Or is the manufacturing equivalent of parallel processors (pipelines) the
answer? Should some flexible manufacturing hark back to the principles of
special, handcrafted products; one-of-a-kind planetary spacecraft? The
answers should be known in less than a decade, considering the profit to be
made in finding them.

Heuristics for architecting manufacturing systems

• The product and its manufacturing system must match (in many
ways).

• Keep it simple (ultraquality helps).
• Partition for near autonomy (a tradeoff with feedback).
• In partitioning a manufacturing system, choose the elements so that

they minimize the complexity of material and information flow (Sav-
agian, Peter J., 1990, USC).

• Watch out for critical misfits (between intersecting waterfalls).
• In making a change in the manufacturing process, how you make it

is often more important than the change itself (management policy).
• When implementing a change, keep some elements constant to pro-

vide an anchor point for people to cling to (Schmidt, Jeffrey H., 1993,
USC; a tradeoff when a new architecture is needed).

• Install a machine that even an idiot can use, and pretty soon everyone
working for you is an idiot (Olivieri, J. M., 1991, USC; an unexpected
consequence of mass production Taylorism). See next heuristic.

• Everyone a customer, everyone a supplier.
• To reduce unwanted nonlinear behavior, linearize.
• If you can’t analyze it, don’t build it.
• Avoid creating the same resonance time constant in more than one

location in a (production) system. 
• The five whys (a technique for finding basic causes, and one used by

every inquisitive child to learn about the world at large).

In conclusion
Modern manufacturing can be portrayed as an ultraquality, dynamic feed-
back system intersecting with that of the product waterfall. The manufac-
turing systems architect’s added tasks, beyond those of all systems architects,
include: (1) maintaining connections to the product waterfall and the soft-
ware spiral necessary for coordinated developments; (2) assuring quality
levels high enough to avoid manufacturing system collapse or oscillation;
(3) determining and helping control the system parameters for stable and
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timely performance and, last but not least, (4) looking farther into the future
than do most product-line architects. 

Exercises

1. Manufacturing systems are themselves complex systems which need
to be architected. If the manufacturing line is software-intensive, and
repeated software upgrades are planned, how can certification of
software changes be managed?

2. The feedback lags or resonances of a manufacturing system of a
commercial product interact with the dynamics of market demand.
Give examples of problems arising from this interaction and possible
methods for alleviating them.

3. Examine the following hypothesis: increasing quality levels in man-
ufacturing enable architectural changes in the manufacturing system
which greatly increase productivity, but may make the system increas-
ingly sensitive to external disruption. For a research exercise, use case
studies or a simplified quantitative model.

4. Does manufacturing systems architecture differ in mass production
systems (thousands of units) and very low-quantity production sys-
tems (fewer than ten produced systems)? If so, how and why?

5. Current flexible manufacturing systems usually build very small lot
sizes from a single product line in response to real-time customer
demand; for example, an automobile production line that builds each
car to order. Consider two alternative architectures for organizing
such a system, one centralized and one decentralized. The first would
use close centralized control, centralized production scheduling, and
resource planning. The other would use fully distributed control
based on disseminating customer/supplier relationships to each work
cell. That is, each job and each work cell interact individually through
an auction for services. What would be advantages and disadvantages
of both approaches? How would the architecture of the supporting
information systems (extending to sales and customer support) have
to differ in the two cases?
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chapter five

Social systems

Introduction: defining sociotechnical systems

Social: concerning groups of people or the general public

Technical: based on physical sciences and their application

Sociotechnical systems: technical works involving signifi-
cant social participation, interests, and concerns.

Sociotechnical systems are technical works involving the participation of
groups of people in ways that significantly affect the architectures and design
of those works. Historically, the most conspicuous have been the large civil
works — monuments, cathedrals, and urban developments, dams and road-
ways among them. Lessons learned from their construction provide the basis
for much of civil (and systems) architecting and its theory.1

More recently, others, physically quite different, have become much
more sociotechnical in nature than might have been contemplated at their
inception — ballistic missile defense, air travel, e-mail, information networks,
welfare and health delivery, for example. Few can even be conceived, much
less built, without major social participation, planned or not. Experiences
with them have generated a number of strategies and heuristics of impor-
tance to architects in general. Several are presented here. Among them are
three heuristics: the four whos, economic value, and the tension between
perceptions and facts. In the interests of informed use, as with all heuristics,
it is important to understand the context within which they evolved, the
sociotechnical domain. At the end of this chapter are a number of general
heuristics of applicability to sociotechnical systems in particular.

Public participation

At the highest level of social participation, members of the public directly
use — and may own a part of — the system’s facilities. At an intermediate
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level they are provided a personal service, usually by a public or private
utility. Most important, individuals and not the utilities — the architect’s
clients — are the end users. Examples are highways, communication and
information circuits, general aviation traffic control, and public power. Public
cooperation and personal responsibility are required for effective operation.
That is, users are expected to follow established rules with a minimum of
policing or control. Drivers and pilots follow the rules of the road. Commu-
nicators respect the twin rights of free access and privacy.

At the highest level of participation, participating individuals choose
and collectively own a major fraction of the system structure such as cars,
trucks, aircraft, computers, telephones, electrical and plumbing hardware,
etc. In a sense, the public “rents” the rest of the facilities through access
charges, fees for use, and taxes. Reaction to a facility failure or a price change
tends to be local in scope, quick, and focused. The public’s voice is heard
through specialized groups such as automobile clubs for highways, retired
persons associations for health delivery, professional societies for power, and
communications services, etc. 

Market forces are used to considerable advantage through adverse pub-
licity in the media, boycotts, and resistance to stock and bond issues on the
one hand, and through enthusiastic acceptance on the other. Recent examples
of major architectural changes strongly supported by the public are super-
highways, satellite communications, entertainment cable networks, jet air-
craft transportation, health maintenance organizations, and a slow shift from
polluting fossil fuels to alternative sources of energy.

Systems of this sort are best described as collaborative systems, systems
which operate only through the partially voluntary initiative of their com-
ponents. This collaboration is an important subject in its own right since the
Internet, the World Wide Web, and open source software are collaborative
assemblages. We address this topic in detail in Chapter 7.

At the other extreme of social participation are social systems used solely
by the government, directly or through sponsorship, for broad social pur-
poses delegated to it by the public; for example, NASA and DoD systems
for exploration and defense, Social Security and Medicare management sys-
tems for public health and welfare, research capabilities for national well-
being, and police systems for public safety. The public pays for these services
and systems only indirectly, through general taxation. The architect’s client
and end user is the government itself. The public’s connection with the
design, construction, and operation of these systems is sharply limited. Its
value judgments are made almost solely through the political process, the
subject of Chapter 10. They might best be characterized as “politicotechni-
cal.”

The foundations of sociotechnical systems architecting
The foundations of sociotechnical systems architecting are much the same
as for all systems: a systems approach, purpose orientation, modeling, cer-
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tification, and insight. Social system quality, however, is less a foundation
than a case-by-case tradeoff; that is, the quality desired depends on the
system to be provided. In nuclear power generation, modern manufacturing,
and manned space flight, ultraquality is an imperative. But in public health,
pollution control, and safety, the level of acceptable quality is only one of
many economic, social, political, and technical factors to be accommodated.

But if sociotechnical systems architecting loses one foundation,
ultraquality, it gains another — a direct and immediate response to the
public’s needs and perceptions. Responding to public perceptions is partic-
ularly difficult, even for an experienced architect. The public’s interests are
unavoidably diverse and often incompatible. The groups with the strongest
interests change with time, sometimes reversing themselves based on a
single incident. Three Mile Island was such an incident for nuclear power
utilities. Pictures of the earth from a lunar-bound Apollo spacecraft suddenly
focused public attention and support for global environmental management.
An election of a senator from Pennsylvania avalanched into widespread
public concern over health insurance and Medicare systems. 

The separation of client and user

In most sociotechnical systems, the client, the buyer of the architect’s ser-
vices, is not the user. This fact can present a serious ethical, as well as
technical, problem to the architect: how to treat conflicts between the pref-
erences, if not the imperatives, of the utility agency and those of the public
(as perceived by the architect) when preferences strongly affect system
design. 

It is not a new dilemma. State governments have partly resolved the
problem by licensing architects and setting standards for systems that affect
the health and safety of the public. Buildings, bridges, and public power
systems come to mind. Information systems are already on the horizon. The
issuing or denial of licenses is one way of making sure that public interest
comes first in the architect’s mind. The setting of standards provides the
architect some arguments against overreaching demands by the client. But
these policies do not treat such conflicts as the degree of traffic control desired
by a manager of an Intelligent Transportation System (ITS) as compared with
that of the individual user/driver, nor the degree of governmental regulation
of the Internet to assure a balance of access, privacy, security, profitmaking,
and system efficiency. One of the ways of alleviating some of these tensions
is through economics. 

Socioeconomic insights

Social economists bring two special insights to sociotechnical systems. The
first insight, which might be called the four whos, asks four questions that
need to be answered as a self-consistent set if the system is to succeed eco-
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nomically; namely, who benefits? who pays? who provides? and, as appro-
priate, who loses? 

Example: The answers to these questions of the Bell
Telephone System were: (1) the beneficiaries were the
callers and those who received the calls; (2) the callers
paid based on usage because they initiated the calls
and could be billed for them; (3) the provider was a
monopoly whose services and charges were regulated
by public agencies for public purposes; and (4) the
losers were those who wished to use the telephone
facilities for services not offered or to sell equipment
not authorized for connection to those facilities. The
telephone monopoly was incentivized to carry out
widely available basic research because it generated
more and better service at less cost, a result the regu-
latory agencies desired. International and national se-
curity agreements were facilitated by having a single
point of contact, the Bell System, for all such matters.
Standards were maintained and the financial strategy
was long-term, typically 30 years. The system was dis-
mantled when the losers evoked antitrust laws, creat-
ing a new set of losers, complex billing, standards
problems, and a loss of research. Arguably, it enabled
the Internet sooner than otherwise. Subsequently, sep-
arate satellite and cable services were established, fur-
ther dismantling what had been a single service
system.

Example: The answers to the four whos for the priva-
tized Landsat System, a satellite-based, optical-infra-
red surveillance service, were: (1) the beneficiaries
were those individuals and organizations who could
intermittently use high-altitude photographs of the
earth; (2) because the value to the user of an individual
photograph was unrelated to its cost (just as is the case
with weather satellite TV), the individual users could
not be billed effectively; (3) the provider was a private,
profit-making organization which understandably de-
manded a cost-plus-fixed-fee contract from the gov-
ernment as a surrogate customer; and (4) when the
government balked at this result of privatization, the
Landsat system faced collapse. Research had been crip-
pled, a French government-sponsored service (SPOT)
had acquired appreciable market share, and legitimate
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customers faced loss of service. Privatization was re-
versed and the government again became the provider.

Example: Serious debates over the nature of their pub-
lic health systems are underway in many countries,
triggered in large part by the technological advances
of the last few decades. These advances have made it
possible for humanity to live longer and in better
health, but the investments in those gains are consid-
erable. The answers to the four whos are at the crux
of the debate. Who benefits — everyone equally at all
levels of health? Who pays — regardless of personal
health or based on need and ability to pay? Who pro-
vides — and determines cost to the user? Who loses
— anyone out of work or above some risk level, and
who determines who loses?

Regardless of how the reader feels about any of these systems, there is
no argument that the answers are matters of great social interest and concern.
At some point, if there are to be public services at all, the questions must be
answered and decisions made. But who makes them and on what basis?
Who and where is the architect in each case? How and where is the archi-
tecture created? How is the public interest expressed and furthered? 

The second economics insight is comparably powerful: in any resource-
limited situation, the true value of a given service or product is determined
by what a buyer is willing to give up to obtain it. Notice that the subject
here is value, not price or cost.

Example: The public telephone network provides a
good example of the difference between cost and val-
ue. The cost of a telephone call can be accurately cal-
culated as a function of time, distance, routing
(satellite, cable, cellular, landline, etc.), location (urban
or rural), bandwidth, facility depreciation, etc. But the
value depends on content, urgency, priority, personal
circumstance, and message type, among other things.
As an exercise, try varying these parameters and then
estimating what a caller might be willing to pay (give
up in basic needs or luxuries). What is then a fair
allocation of costs among all users? Should a sick, re-
mote, poor caller have to pay the full cost of remote
TV health service, for example? Should a business
which can pass costs on to its customers receive vol-
ume discounts for long-distance calling via satellite?
Should home TV be pay-per-view for everyone? Who
should decide on the answers?
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These two socioeconomic heuristics, used together, can alleviate the
inherent tensions among the stakeholders by providing the basis for com-
promise and consensus among them. The complainants are likely to be those
whose payments are perceived as disproportionate to the benefits they
receive. The advocates, to secure approval of the system as a whole, must
give up or pay for something of sufficient value to the complainants that
they agree to compromise. Both need to be made to walk in the others’ shoes
for a while. Therein can be the basis of an economically viable solution.

The interaction between the public and private sectors
A third factor in sociotechnical systems architecting is the strong interplay
between the public and private sectors, particularly in the advanced democ-
racies where the two sectors are comparable in size, capability, and influence,
but differ markedly in how the general public expresses its preferences.

By the middle of the 1990s, the historic boundaries between public and
private sectors in communications, health delivery, welfare services, electric
power distribution, and environmental control were in a state of flux. This
chapter is not the place to debate the pros and cons. Suffice to say the
imperatives, interests, and answers to the economists’ questions are sharply
different in the two sectors.2 The architect is well advised to understand the
imperatives of both sectors prior to suggesting architectures that must
accommodate them. For example, the private sector must make a profit to
survive; the public sector does not and treats profits as necessary evils. The
public sector must follow the rules; the private sector sees rules and regu-
lations as constraints and deterrents to efficiency. Generally speaking, the
private sector does best in providing well-specified things at specified times.
The public sector does best at providing services within the resources pro-
vided. 

Because of these differences, one of the better tools for relieving the
natural tension between the sectors is to change the boundaries between
them in such negotiable areas as taxation, regulation, services provided,
subsidies, billing, and employment. Because perceived value in each of these
areas is different in the two sectors and under different circumstances, pos-
sibilities can exist where each sector perceives a net gain. The architect’s role
is to help discover the possibilities, achieve balance through compromise on
preferences, and assure a good fit across boundaries.

Architecting a system, such as a public health system, which involves
both the public and private sectors can be extraordinarily difficult, particu-
larly if agreement does not exist on a mutually-trusted architect, on the
answers to the economist’s questions, or on the social value of the system
relative to that of other socially desirable projects.
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Facts vs. perceptions: an added tension
Of all the distinguishing characteristics of social systems, the one which most
sharply contrasts them with other systems is the tension between facts and
perceptions about system behavior. To illustrate the impact on design, archi-
tects are well familiar with the tradeoffs between performance, schedule,
cost, and risk. These competing factors might be thought of as pulling archi-
tecting four different directions, as sketched in Figure 5.1. Figure 5.2 can be
thought of as the next echelon or ring — the different sources or components
of performance, schedule, cost, and risk. Notice that performance has an
aesthetic component as well as technical and sociopolitical sources. Auto-
mobiles are a clear example. Automobile styling often is more important
than aerodynamics or environmental concerns in their architectural design.
Costs also have several components, of which the increased costs to people
of cost reduction in money and time are especially apparent during times
of technological transition. 

Figure 5.1

Figure 5.2
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To these well-known tensions must be added another, one which social
systems exemplify but which exist to some degree in all complex systems;
namely, the tension between perceptions and facts, shown in Figure 5.3. This
added tension may be dismaying to technically trained architects, but it is
all too real to those who deal with public issues. Social systems have gen-
erated a painful design heuristic: it’s not the facts, it’s the perceptions that
count. Some real-world examples:

• It makes little difference what facts nuclear engineers present about
the safety of nuclear power plants, their neighbors’ perception is that
someday their local plant will blow up. Remember Three Mile Island
and Chernobyl? A.M. Weinberg of Oak Ridge Associated Universities
suggested perhaps the only antidote: “The engineering task is to
design reactors whose safety is so transparent that the skeptical elite
is convinced, and through them the general public.”3

• Airline travel has been made so safe that the most dangerous part of
travel can be driving to and from the airport. Yet, every airliner crash
is headline news. A serious design concern, therefore, is how many
passengers an airliner should carry — 200? 400? 800? — because even
though the average accident rate per departure would probably re-
main the same,4 more passengers would die at once in the larger
planes, and a public perception might develop that larger airliners
are less safe, facts notwithstanding.

• One of the reasons that health insurance is so expensive is that health
care is perceived by employees as nearly “free” because almost all its
costs are paid for either by the employee’s company or the govern-
ment. The facts are that the costs are either passed on to the consumer,
subtracted from wages and salaries, taken as a business deduction
against taxes, paid for by the general taxpayer, or all of the above.
There is no free lunch. 

Figure 5.3
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• One of the most profound and unanticipated results of the Apollo
flights to the moon was a picture of the Earth from afar, a beautiful
blue, white, brown, and green globe in the blackness of space. We
certainly had understood that the Earth was round, but that distant
perspective changed our perception of the vulnerability of our home
forever, and, with it, our actions to preserve and sustain it. Just how
valuable was Apollo, then and in our future? Is there an equivalent
value today? 

Like it or not, the architect must understand that perceptions can be just
as real as facts, just as important in defining the system architecture, and
just as critical in determining success. As one heuristic states: “the phrase,
“I hate it,” is direction.5 There have even been times when, in retrospect,
perceptions were “truer” than facts which changed with observer, circum-
stance, technology, and better understanding. Some of the most ironic state-
ments begin with, “It can’t be done, because the facts are that...”

Alleviating the tension between facts and perceptions can be highly
individualistic. Some individuals can be convinced — in either direction —
by education, some by prototyping or anecdotes, some by A. M. Greenberg’s
antidote given earlier, some by better packaging or presentation, and some
only by the realities of politics. Some individuals will never be convinced,
but they might be accepting. In the end, it is a matter of achieving a balance
of perceived values. The architect’s task is to search out that area of common
agreement that can result in a desirable, feasible system.

Heuristics for social systems

• Success is in the eyes of the beholder (not the architect).
• Don’t assume that the original statement of the problem is necessarily

the best, or even the right one. (Most customers would agree.)
• In conceptualizing a social system, be sure there are mutually consis-

tent answers to the Four Whos: Who benefits? Who Pays? Who sup-
plies (provides)? And, as appropriate, Who loses? 

• In any resource-limited situation, the true value of a given service or
product is determined by what one is willing to give up to obtain it. 

• The choice between the architectures may well depend upon which
set of drawbacks the stakeholders can handle best (not on which
advantages are the most appealing).

• Particularly for social systems, it’s not the facts, it’s the perceptions
that count (try making a survey of public opinion).

• The phrase, “I hate it.” is direction (Or weren’t you listening?)
• In social systems, how you do something may be more important than

what you do. (A sometimes bitter lesson for technologists to learn.)
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• When implementing a change, keep some elements constant as an
anchor point for people to cling to (at least until there are some new
anchors).

• It’s easier to change the technical elements of a social system than the
human ones (enough said).

In conclusion
Social systems, in general, place social concerns ahead of technical ones.
They exemplify the tension between perception and fact. More than most
systems, they require consistent responses to questions of who benefits?;
who pays?; who supplies (provides, builds, etc.); and, sociologically at least,
who loses?

Perhaps more than other complex systems, the design and development
of social ones should be amenable to insights and heuristics. Social factors,
after all, are notoriously difficult to measure, much less predict. But, like
heuristics, they come from experience, from failures as well as successes,
and from lessons learned.

Exercises

1. Public utilities are examples of sociotechnical systems. How are the
heuristics discussed in this chapter reflected in the regulation, design,
and operation of a local utility system?

2. Apply the four whos to a sociotechnical system familiar to you. Ex-
amples: Internet, air travel, communication satellites, a social service.

3. Many efforts are underway to build and deploy intelligent transport
systems using modern information technologies to improve existing
networks and services. Investigate some of the current proposals and
apply the four whos to the proposal.

4. Pollution and pollution control are examples of a whole class of so-
ciotechnical systems where disjunctions in the four whos are com-
mon. Discuss how governmental regulatory efforts, both through
mandated standards and pollution license auctions, attempt to recon-
cile the four whos. To what extent have they been successful? How
did you judge success?

5. Among the most fundamental problems in architecting a system with
many stakeholders is conflicts in purposes and interests. What archi-
tectural options might be used to reconcile them?

6. Give an example of the application of the heuristic: in introducing
technological change, how you do it is often more important than
what you do.
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chapter six

Software and information 
technology systems

Today I am more convinced than ever. Conceptual integrity
is central to product quality. Having a system architect is
the most important step toward conceptual integrity.
Frederick P. Brooks, Jr., The Mythical Man-Month After
Twenty Years

Introduction: the status of software architecting
Software is rapidly becoming the centerpiece of complex system design, in
the sense that an increasing fraction of system performance and complexity
is captured in software. Software is increasingly the portion of the system
that enables the unique behavioral characteristics of the system. Competitive
developers of end-user system products find themselves increasingly devel-
oping software, even though the system itself combines both hardware and
software. The reasons stem from software’s ability to create intelligent behav-
ior and to quickly accommodate technical-economic trends in hardware
development.

Although detailed quantitative data is hard to come by, anecdotal stories
tell a consistent story. A wide variety of companies in different industries
(e.g., telecommunications, consumer electronics, industrial controls) have
reported a dramatic shift in the relative engineering efforts devoted to hard-
ware and software.* Where 10 to 15 years ago the ratio was typically 70%
hardware and 30% software, it is now typically reversed, 30% hardware and
70% software, and the software fraction is continuing to grow. This should
not be surprising given how the semiconductor industry has changed. Where
product developers used to build from relatively simple parts (groups of
logic gates), they now use highly integrated microprocessors with most
peripheral devices on the chip. The economies of scale in semiconductor

* The numbers are anecdotal, but reflect private communications to the one of the present
authors from a wide variety of sources.
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design and production have pushed the industry toward integrated solu-
tions where the product developer primarily differentiates through software.
Moreover, microcontrollers have become so inexpensive and have such low
power consumption that they can be placed in nearly any product, even
throwaway products. The microprocessor-based products acquire their func-
tionality by the software that executes on them. The product developer is
transformed from a hardware designer to a hardware integrator and software
developer. As software development libraries become larger, more capable,
and accepted, many of the software developers will be converted to software
integrators.

The largest market for software today is usually termed “information
technology,” which is a term encompassing the larger domain of computers
and communications applied to business and public enterprises. We consider
both here as software architecture, which as a field is becoming a distinct
specialty. What is usually called software architecture, at least in the research
community, is usually focused on developing original software rather than
building information-processing systems through integration of large soft-
ware and hardware components. Information technology practice is less and
less concerned with developing complete original applications and more and
more concerned with building systems through integration.

The focus of this chapter is less on the architecting of software (though
that is discussed here and in Part Three) than it is on the impact of software
on system architecting. Software possesses two key attributes that affect
architecting. First, well-architected software can very rapidly evolve. Evolu-
tion of deployed software is much more rapid than that of deployed hard-
ware, because an installed base of software can be regularly replaced —
annual and even quarterly replacement is common. Annual or more frequent
field software upgrades are normal for operating systems, databases, end-
user business systems, large-scale engineering tools, and communication and
manufacturing systems. This puts a demanding premium on software archi-
tectures because they must be explicitly designed to accommodate future
changes and to allow repeated certification with those changes.

Second, software is an exceptionally flexible medium. Software can eas-
ily be built which embodies many logically complex concepts such as layered
languages, rule-driven execution, data relationships, and many others. This
flexibility of expression makes software an ideal medium with which to
implement system “intelligence.” In both the national security and commer-
cial worlds, intelligent systems are far more valuable to the user and far
more profitable for the supplier than their simpler predecessors.

In addition, a combination of technical and economic trends favor build-
ing systems from standardized computer hardware and system-unique soft-
ware, especially when computing must be an important element of the
system. Building digital hardware at very high integration levels yields
enormous benefits in cost per gate, but it requires comparably large capital
investments in design and fabrication systems. These costs are fixed, giving
a strong competitive advantage to high production volumes. Achieving high
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production volumes requires that the parts be general purpose. For a system
to reap the benefits of very high integration levels, its developers must either
use the standard parts (available to all other developers as well) or be able
to justify the very large fixed expense of a custom development. If standard
hardware parts are selected, the remaining means to provide unique system
functionality is software.

Logically, the same situation applies to writing software. Software pro-
duction costs are completely dominated by design and test. Actual produc-
tion is nearly irrelevant. Thus, there is likewise an incentive to make use of
large programming libraries or components and amortize the development
costs over many products. In fact, this is already taking place. While much
of the software engineering community is frustrated with the pace of soft-
ware reuse, there are many successful examples. One obvious one is oper-
ating systems. Very few groups who use operating systems write one from
scratch anymore. Either they use an off-the-shelf product from one of the
remaining vendors, or they use an open source distribution and customize
it for their application. Databases, scripting languages, and Web applications
are all examples of successful reuse of large software infrastructures.

A consequence of software’s growing complexity and central role is a
recognition of the importance of software architecture and its role in system
design. An appreciation of sound architectures and skilled architects is taking
hold. The soundness of the software architecture will strongly influence the
quality of the delivered system and the ability of the developers to further
evolve the system. When a system is expected to undergo extensive evolution
after deployment, it is usually more important that the system be easily
evolvable than that it be exactly correct at first deployment.

Architects, architectures, and architecting are terms increasingly seen in
the technical literature, particularly in the software field.1 Software architec-
ture is frequently, though inconsistently, discussed. Many groups have for-
mally defined the term software architecture. Although those definitions all
differ, a distillation of commonly used ideas is that the architecture is the
overall structure of a software system in terms of components and interfaces.
This definition would include the major software components, their inter-
faces with each other and the outside world, and the logic of their execution
(single-threaded, interrupted, multithreaded, combination). To this is often
added principles defining the system’s design and evolution, an interesting
combination of heuristics with structure to define architecture. A software
architectural “style” is seen as a generic framework of components or inter-
faces that defines a class of software structures. The view taken in this book,
and in some of the literature,2 is somewhat more expansive and also includes
other high-level views of the system: behavior, constraints, and applications.

High-level advisory bodies to the Department of Defense are calling for
architects of ballistic missile defense, CI4 (command, control, communica-
tions, computers, and intelligence), global surveillance, defense communi-
cations, internetted weapons systems, and other “systems-of-systems.” For-
mal standards are in process defining the role, milestones, and deliverables
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of system architecting.* Many of the ideas and terms of those standards come
directly from the software domain, e.g., object-oriented, spiral process model,
and rapid prototyping. The carryover should not be a surprise; the systems
for which architecting is particularly important are behaviorally complex,
data-intensive, and software-rich. Examples of software-centered systems of
similar scope are appearing in the civilian world, such as the Information
Superhighway, Internet, global cellular telephony, healthcare, manned space
flight, and flexible manufacturing operations.

The consequences of this accelerating trend to smarter systems to soft-
ware design are now becoming apparent. For the same reason that guidance
and control specialists became the core of systems leadership in the past,
software specialists will become the core in the future. In the systems world,
software will change from having a support role (usually after the hardware
design is fixed) to becoming the centerpiece of complex systems design and
operation. As more and more of the behavioral complexity of systems is
embodied in software, software will become the driver of system configu-
ration. Hardware will be selected for its ability to support software instead
of the reverse. This is now common in business information systems and
other applications where compatibility with a software legacy is important.

If software is becoming the centerpiece of system development, it is
particularly important to reconcile the demands of system and software
development. Even if 90% of the system-specific engineering effort is put
into software, the system is still the end product. It is the system, not the
software inside, the client wishes to acquire. The two worlds share many
common roots, but their differing demands have led them in distinctly
different directions. Part of the role of systems architecting is to bring them
together in an integrated way.

Software engineering is a rich source for integrated models; models that
combine, link, and integrate multiple views of a system. Many of the for-
malisms now used in systems engineering had their roots in software engi-
neering. This chapter discusses the differences between system architecting
and software architecting, current directions in software architecting and
architecture, and heuristics and guidelines for software. Chapter 10 provides
further detail on four integrated software modeling methods, each aimed at
the software component of a different type of system.

Software as a system component
How does the architecture and architecting of software interact with that of
the system as a whole? Software has unique properties that influence overall
system structure.

* The IEEE has recently upgraded a planning group to a working group to develop architecting
standards. U. S. Military Standards work is also still in progress; see Chapter 11.
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1. Software provides a palette of abstractions for creating system behav-
ior. Software is extensible through layered programming to provide
abstracted user interfaces and development environments. Through
the layering of software it is possible to directly implement concepts
such as relational data, natural language interaction, and logic pro-
gramming that are far removed from their computational implemen-
tation. Software does not have a natural hierarchical structure, at least
not one that mirrors the system-subsystem-component hierarchy of
hardware.

2. It is economically and technically feasible to use evolutionary delivery
for software. If architected to allow it, the software component of a
deployed system can be completely replaced on a regular schedule.

3. Software cannot operate independently. Software must always be
resident on some hardware system and, hence, must be integrated
with some hardware system. The interactions between, and integra-
tion with, this underlying hardware system become key elements in
software-centered system design.

For the moment there are no emerging technologies that are likely to
take software’s place in implementing behaviorally complex systems. Per-
haps some form of biological or nano-agent technology will eventually
acquire similar capabilities. In these technologies, behavior is expressed
through the emergent properties of chaotically interacting organisms. But
the design of such a system can be viewed as a form of logic programming
in which the “program” is the set of component construction and interface
rules. Then the system, the behavior that emerges from component interac-
tion, is the expression of an implicit program, a highly abstracted form of
software.

System architecting adapts to software issues through its models and
processes. To take advantage of the rich functionality there must be models
that capture the layered and abstracted nature of complex software. If evo-
lutionary delivery is to be successful, and even just to facilitate successful
hardware/software integration, the architecture must reconcile continuously
changing software with much less frequently changing hardware.

Software for modern systems

Software plays disparate roles in modern systems. Mass-market application
software, one-of-a-kind business systems, real-time analysis and control soft-
ware, and human interactive assistants are all software-centered systems,
but each is distinct from the other. The software attributes of rich function-
ality and amenability to evolution match the characteristics of modern sys-
tems. These characteristics include:

1. Storage of, and semiautonomous and intelligent interpretation of,
large volumes of information.
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2. Provision of responsive human interfaces that mask the underlying
machines and present their operation in metaphor.

3. Semiautonomous adaptation to the behavior of the environment and
individual users.

4. Real-time control of hardware at rates beyond human capability with
complex functionality.

5. Constructed from mass-produced computing components and system-
unique software, with the capability to be customized to individual
customers.

6. Coevolution of systems with customers as experience with system
technology changes perceptions of what is possible.

The marriage of high-level language compilers with general-purpose
computers allows behaviorally complex, evolutionary systems to be devel-
oped at reasonable cost. While the engineering costs of a large software
system are considerable, they are much less than the costs of developing a
pure hardware system of comparable behavioral complexity. Such a pure
hardware system could not be evolved without incurring large manufactur-
ing costs once again. Hardware-centered systems do evolve, but at a slower
pace. They tend to be produced in similar groups for several years, then
make a major jump to new architectures and capabilities. The time of the
jump is associated with the availability of new capabilities and the program-
matic capability of replacing an existing infrastructure.

Layering of software as a mechanism for developing greater behavioral
complexity is exemplified in the continuous emergence of new software
languages and in Internet and Web applications being built on top of dis-
tributed infrastructures. The trend in programming languages is to move
closer and closer to application domains. The progression of language is
from machine level (machine and assembly languages) to general purpose
computing (FORTRAN, Pascal, C, C++, Ada) to domain-specific (MatLab,
Visual Basic for Applications, dBase, SQL, PERL, and other scripting lan-
guages). At each level the models are closer to the application and the
language components provide more specific abstractions. By using higher-
and higher-level languages, developers are effectively reusing the coding
efforts that went into the language’s development. Moreover, the new lan-
guages provide new computational abstractions or models not immediately
apparent in the architecture of the hardware on which the software executes.
Consider a logic programming language like PROLOG. A program in PRO-
LOG is more in the nature of hypothesis and theorem proof than arithmetic
and logical calculation. But it executes on a general-purpose computer as
invisibly as does a FORTRAN program.

Systems, software, and process models

An architectural challenge is to reconcile the integration needs of software
and hardware to produce an integrated system. This is both a problem of
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representation or modeling and of process. Modeling aspects are taken up
subsequently in this chapter and in Part Three. On the process side, hardware
is best developed with as little iteration as possible, while software can (and
often should) evolve through much iteration. Hardware should follow a
well-planned design and production cycle to minimize cost, with large scale
production deferred to as close to final delivery as possible (consistent with
adequate time for quality assurance). But software cannot be reliably devel-
oped without access to the targeted hardware platform for much of its
development cycle. Production takes place nearly continuously, with release
cycles often daily in many advanced development organizations.

Software distribution costs are comparatively so low that repeated com-
plete replacement of the installed base is normal practice. When software
firms ship their yearly (or more frequent) upgrades they ship a complete
product. Firms commonly “ship” patches and limited updates on the Inter-
net, eliminating even the cost of media distribution. The cycle of planned
replacement is so ingrained that some products (for example, software devel-
opment tools) are distributed as subscriptions; a quarterly CD-ROM with a
new version of the product, application notes, documentation, and pre-
release components for early review.

In contrast, the costs of hardware are often dominated by the physical
production of the hardware. If the system is mass-produced this will clearly
be the case. Even when production volumes are very low, as in unique
customized systems, the production cost is often comparable to or higher
than the development cost. As a result, it is uneconomic, and hence imprac-
tical, to extensively replace a deployed hardware system with a relatively
minor modification. Any minor replacement must compete against a full
replacement, a replacement with an entirely new system designed to fulfill
new or modified purposes.

One important exception to the rule of low deployment costs for software
is where the certification costs of new releases are high. For example, one
does not casually replace the flight control software of the Space Shuttle any
more than one casually replaces an engine. Extensive test and certification
procedures are required before a new software release can be used. Certifi-
cation costs are analogous to manufacturing costs in that they are costs
required to distribute each release but do not contribute to product devel-
opment.

Waterfalls for software?
For hardware systems, the process model of choice is a waterfall (in one of
its pure or more refined incarnations). The waterfall model tries to keep
iterations local, that is, between adjacent tasks such as requirements and
design. Upon reaching production there is no assumption of iteration, except
the large-scale iteration of system assessment and eventual retirement
and/or replacement. This model fits well within the traditional architecting
paradigm as described in Chapter 1.
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Software can, and sometimes does, use a waterfall model of develop-
ment. The literature on software development has long embraced the sequen-
tial paradigm of requirements, design, coding, test, and delivery. But dissat-
isfaction with the waterfall model for software led to the spiral model and
variants. Essentially all successful software systems are iteratively delivered.
Application software iterations are expected as a matter of course. Weapon
system and manufacturing software is also regularly updated with refined
functionality, new capabilities, and fixes to problems. One reason for soft-
ware iterations is to fix problems discovered in the field. A waterfall model
tries to eliminate such problems by doing a very high-quality job of the
requirements. Indeed, the success of a waterfall development is strongly
dependent on the quality of the requirements. But in some systems the
evolvability of software can be exploited to reach the market faster and avoid
costly, and possibly fruitless, requirements searches.

Example: Data communication systems have an effec-
tive requirement of interoperating with whatever hap-
pens to be present in the installed base. Deployed
systems from a global range of companies may not
fully comply with published standards, even if the
standards are complete and precise (which they often
are not). Hence, determining the “real” requirements
to interoperate is quite difficult. The most economical
way to do so may be to deploy to the field and compile
real experience. But that, in turn, requires that the sys-
tems support the ability to determine the cause of in-
teroperation problems and be economically modifiable
once deployed to exploit the knowledge gained.

But, in contrast, a casual attitude toward evolution in systems with safety
or mission-critical requirements can be tragic.

Example: The Therac 25 was a software-controlled ra-
diation treatment machine in which software and sys-
tem failures resulted in six deaths.3 It was an
evolutionary development from a predecessor ma-
chine. The evidence suggests that the safety require-
ments were well understood, but that the system and
software architectures both failed to maintain the prop-
erties. The system architecture was flawed in that all
hardware safety interlocks (which had been present in
the predecessor model) were removed, leaving soft-
ware checks as the sole safeguard. The software archi-
tecture was flawed because it did not guarantee the
integrity of treatment commands entered and checked
by the system operator.
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One of the most extensively described software development problems
is customized business systems. These are corporate systems for accounting,
management, and enterprise-specific operations. They are of considerable
economic importance, are built in fairly large numbers (though no two are
exactly alike), and are developed in an environment relatively free of gov-
ernment restrictions. Popular and widely published development methods
have strongly emphasized detailed requirements development, followed by
semi-automated conversion of the requirements to program code — an appli-
cation-specific waterfall.

While this waterfall is better than ad hoc development, results have been
disappointing. In spite of years of experience in developing such business
systems, large development projects regularly fail. As Tom DeMarco has
noted,4 “somewhere, today, an accounts payable system development is
failing” in spite of the thousands of such systems that have been developed
in the past. Part of the reason is the relatively poor state of software engi-
neering compared to other fields. Another reason is failure to make effective
use of methods known to be effective. An important reason is the lack of an
architectural perspective and the benefits it brings.5

The architect’s perspective is to explicitly consider implementation,
requirements, and long-term client needs in parallel. A requirements-cen-
tered approach assumes that a complete capture of documentable require-
ments can be transformed into a satisfactory design. But existing require-
ments modeling methods generally fail to capture performance requirements
and ill-structured requirements like modifiability, flexibility, and availability.
Even where these nonbehavioral requirements are captured, they cannot be
transformed into an implementation in any even semiautomated way. And
it is the nature of serious technological change that the impact will be unpre-
dictable. As technology changes and experience is gained, what is demanded
from systems will change as well.

The spiral model as originally described did not embrace evolution. Its
spirals were strictly risk based and designed to lead to a fixed system deliv-
ery. Rapid prototyping envisions evolution, but only on a limited scale.
Newer spiral model concepts do embrace evolution.6 Software processes, as
implemented, spiral through the waterfall phases, but do so in a sequential
approach to moving release levels. This modified model was introduced in
Chapter 4, in the context of integrating software with manufacturing sys-
tems, and it will be further explored below.

Spirals for hardware?
To use a spiral model for hardware acquisition is equivalent to repeated
prototyping. A one-of-a-kind, hardware-intensive system cannot be proto-
typed in the usual sense. A complete "prototype" is, in fact, a complete
system. If it performs inadequately it is a waste of the complete manufac-
turing cost of the final system. Each one, from the first article, needs to be
produced as though it were the only one. A prototype for such a system
must be a limited version or component intended to answer specific devel-
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opmental questions. The development process needs to place strong empha-
sis on requirements development and attention to detailed purpose through-
out the design cycle. Mass-produced systems have greater latitude in
prototyping because of the prototype-to-production cost ratio, but still less
than in software. However, the initial “prototype” units still need to be
produced. If they are to be close to the final articles they need to be produced
on a similar manufacturing line. But setting up a complete manufacturing
line when the system is only in prototype stage is very expensive. Setting
up the manufacturing facilities may be more expensive than developing the
system. As a hardware-intensive system itself, the manufacturing line cannot
be easily modified, and leaving it idle while modifying the product to be
produced represents a large cost.

Integration: spirals and circles
What process model matches the nature of evolutionary, mixed technology,
behaviorally complex systems? As was suggested earlier, a spiral and circle
framework seems to capture the issues. The system should possess stable
configurations (represented as circles) and development should iteratively
approach those circles. The stable configurations can be software release
levels, architectural frames, or hardware configurations.

This process model matches the accepted software practice of moving
through defined release levels, with each release produced in cycles of
requirements-design-code-test. Each release level is a stable form that is used
while the next release is developed. Three types of evolution can be identi-
fied. A software product, like an operating system or shrink-wrapped appli-
cation, has major increments in behavior indicated by changes in the release
number, and more minor increments by changes in the number after the
“point.” Hence a release 7.2 product would be major version seven, second
update. The major releases can be envisioned as circles, with the minor
releases cycling into them. On the third level are those changes that result
in new systems or rearchitected old systems. These are conceptually similar
to the major releases, but represent even bigger changes. The process with
software annotations is illustrated in Figure 6.1. By using a side view one
can envision the major releases as vertical jumps. The evolutionary spiral
process moves out to the stable major configurations, then jumps up to the
next major change. In practice, evolution on one release level may proceed
concurrently with development of a major change.

Example: The Internet and World Wide Web provide
numerous examples of stable intermediate forms pro-
moting evolution. The architecture of the Internet, in
the sense of an organizing or unifying structure, is
clearly the Internet Protocol (IP), the basic packet
switching definition. IP defines how packets are struc-
tured and addressed, and how the routing network
interacts with the packets. It determines the kinds of
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services that can be offered on the Internet, and in so
doing constrains application construction. As the In-
ternet has undergone unprecedented growth in users,
applications, and physical infrastructure, IP has re-
mained stable. Only now is there a slow process of
evolving IP, and its success is considered problematic
given how entrenched the current version of IP is. The

Figure 6.1
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World Wide Web has similarly undergone tremendous
growth and evolution on top of a simple set of ele-
ments, the hypertext transfer protocol (http) and the
hypertext markup language (html). Both the Internet
and the World Wide Web are classic examples of sys-
tems with nonphysical architecture, a topic that be-
comes central in the discussion of collaborative
systems in Chapter 7.

Hardware-software integration adds to the picture. The hardware con-
figurations must also be stable forms, but should appear at different points
than the software intermediates on the development timeline. Some stable
hardware should be available during software development to facilitate that
development. A typical development cycle for an integrated hardware-soft-
ware system illustrates parallel progressions in hardware and software with
each reaching different intermediate stable forms. The hardware progression
might be wire-wrap breadboard, production prototype, production, then
(possibly) field upgrade. The software moves through a development spiral
aiming at a release 1.0 for the production hardware. The number of software
iterations may be many more than for the hardware. In late development
stages, new software versions may be built weekly.7 Before that, there will
normally be partial releases that run on the intermediate hardware forms
(the wire-wrap breadboards and the production prototypes). Hard-
ware/software co-design research is working toward environments in which
developing hardware can be represented faithfully enough so that physical
prototypes are unnecessary for early integration. Such tools may become
available, but iteration through intermediate hardware development levels
is still the norm in practice.

A related problem in designing a process for integration is the proper
use of the heuristic do the hard part first. Because software is evolved or
iterated, this heuristic implies that the early iterations should address the
most difficult challenges. Unfortunately, honoring the heuristic is often dif-
ficult. In practice, the first iterations are often good-looking interface dem-
onstrations or constructs of limited functionality. If interface construction is
difficult, or user acceptance of the interface is risky or difficult, this may be
a good choice. But if operation-to-time constraints under loaded conditions
is the key problem, some other early development strategy should be pur-
sued. In that case the heuristic suggests gathering realistic experimental data
on loading and timing conditions for the key processes of the system. That
data can then be used to set realistic requirements for components of the
system in its production configuration.

Example: Call Distribution Systems manage large
numbers of phone personnel and incoming lines, as in
technical support or phone sales operation. By tying
the system into sales databases it is possible to develop
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sophisticated support systems that ensure that full cus-
tomer information is available in real-time to the phone
personnel. To be effective, the integration of data sourc-
es and information handling must be customized to
each installation and evolve as understanding devel-
ops of what information is needed and available. But,
because the system is real-time and critical to customer
contact, it must provide its principal functionality re-
liably and immediately upon installation.

Thus, an architectural response to the problems of hardware-software
integration is to architect both the process and the product. The process is
manipulated to allow different segments of development to match them-
selves to the demands of the implementation technology. The product is
designed with interfaces that allow separation of development efforts where
the efforts need to proceed on very different paths. How software architec-
ture becomes an element of system architecture, and more details on how
this is to be accomplished, are the subjects to come.

The problem of hierarchy

A central tenet of systems engineering is that all systems can be viewed in
hierarchies. A system is composed of subsystems, which are themselves
composed of small units. A system is also embedded in higher-level systems
in which it acts as a component. One person’s system is another person’s
component. A basic strategy is to decompose any system into subsystems,
decompose the requirements until they can be allocated to subsystems, care-
fully specify and control the interfaces among the subsystems, and repeat
the process on every subsystem until you reach components you can buy or
are the products of disciplinary engineering. Decomposition in design is
followed by integration in reverse. First, the lowest-level components are
integrated into the next level subsystems, those subsystems are integrated
into larger subsystems, and so on until the entire system is assembled.

Because this logic of decomposition and integration is so central to
classical systems engineering, it is difficult for many systems engineers to
understand why it often does not match software development very well.
To be sure, some software systems are very effectively developed this way.
The same logic of decomposition and integration matches applications built
in procedural languages (like C or Pascal*) and where the development effort
writes all of the application’s code. In these software systems the code begins
with a top-level routine, which calls first-level routines, which call second-
level routines, and so forth, to primitive routines that do not call others. In
a strictly procedural language the lower-level routines are contained within

* Strictly speaking, C is not a procedural language and some of what follows does not precisely
apply to it. Those knowledgeable in comparative programming languages can consider the
details of the procedural vs. object-oriented paradigms in the examples to come.
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or encapsulated in the higher-level routines that use them. If the developer
organization writes all the code, or uses only relatively low-level program-
ming libraries, the decomposition chain terminates in components much like
the hardware decomposition chain terminates. Like in the classical systems
engineering paradigm, we can integrate and test the software system in
much the same way, testing and integrating from the bottom, up, until we
reach the topmost module.

As long as the world looks like this, on both the hardware and software
side, we can think of system decompositions as looking like Figure 6.2. This
figure illustrates the world, and the position of software, as classical systems
engineers would portray it. Software units are contained within the processor
units that execute them. Software is properly viewed as a subsystem of the
processor unit.

However, if we instead went to the software engineering laboratory of
an organization building a modern distributed system and asked the soft-
ware engineers to describe the system hierarchy, we might get a very differ-
ent story. Much modern software is written using object-oriented abstrac-
tions, is built in layers, and makes extensive use of very large software
infrastructure objects (like operating systems or databases) that don’t look
very much like simple components or the calls to a programming library.
Each of these issues creates a software environment that does not look like
a hierarchical decomposition of encapsulated parts; and, to the extent that
a hierarchy exists, it is often quite different from the systems/hardware
hierarchy. We consider each of these issues in turn.

Object-orientation
The software community engages in many debates about exactly what
“object-oriented” should mean, but only the fundamental concepts are

Figure 6.2
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important for systems architecting. An object is a collection of functions (often
called methods) and data. Some of the functions are public, that is, they are
exposed to other software objects and can be called by them. Depending on
the specific language and run-time environment, calling a function may be
a literal function call, or it may simply mean sending a message to the target
object, which interprets it and takes action. Objects can be “active,” that is,
they can run concurrently with other objects. In some software environments
concurrent objects can freely migrate from computer to computer over an
intervening network. Often, the software developer does not know, and does
not want to know, on which machine a particular object is running, and does
not want to directly control its migration. Concurrent execution of the objects
is passed to a distributed operating system, which may control object exe-
cution through separately defined policies.

In object-oriented systems the number of objects existing when the soft-
ware executes can be indeterminate. An object has a defining “template”
(although the word template means something slightly different in many
object-oriented languages) known as a “class.” A class is analogous to a type
in procedural programming. Thus, just as one can declare many variables
of type “float,” so one can declare many objects corresponding to a given
class. In most object-oriented languages the creation of objects from classes
happens at run-time, when the software is executing. If objects are not created
until run-time the number of them can be controlled by external events.

This is a very powerful method of composing a software system. Each
object is really a computational machine. It has its own data (potentially a
very large amount) and as much of its own program code as the class author
decides. This sort of dynamic, object-oriented software can essentially man-
ufacture logical machines, in arbitrary numbers, and set them to work on a
network in response to events that happen during program execution. To
compare this to classical notions of decomposition, it is as though one could
create subsystems on the fly during system operation.

Layered design
The objects are typically composed in a layered design. Layers are a form of
hierarchy, with a critical difference. In a layered system the lower-level
elements (those making up a lower layer) are not contained in the upper
layer elements. The elements of a layer interact to produce a set of services,
which are made available to the next higher layer (in a strictly layered
system). Objects in the next higher layer can use the services offered by the
next lower layer, but cannot otherwise access the lower layer objects. Within
a layer the objects normally treat each other as peers. That is, no object is
contained within another object. However, object-orientation does have the
notion of encapsulation. An object has internals, and the internals (functions
and data) belong to that object alone, although they can be duplicated in
other objects with the same class.

A modern distributed application may be built as a set of interacting,
concurrent objects. The objects themselves interact with a lower layer, often
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called “middleware services.” The middleware services are provided by
externally supplied software units. Some of the services are part of commer-
cial operating systems, others are individual commercial products. Those
middleware components ride on lower layers of network software, supplied
as part of the operating system services. In a strong distributed environment,
the application programmers, who are writing the objects at the top level,
do not know what the network configuration is on which their objects ride.
Of course, if there are complex performance requirements, it may be neces-
sary to know and control the network configuration and to program with
awareness of its structure. But in many applications no such knowledge is
needed, and the knowledge of the application programmers about what code
is actually running ceases when the thread of execution leaves the application
and enters the middleware and operating systems.

The hierarchy problem is that, at this point, the software hierarchy and
the hardware hierarchy have become disconnected. To the software architect
the natural structure of the system is layers of concurrent objects as illus-
trated in Figure 6.3. This means the systems and software architects may
clash in their partitioning of the system, and inappropriate constraints may
be placed on one or the other. Before investigating the issue of reconciliation,
we must complete the discussion with the nature of software components.

Figure 6.3
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Large, autonomous components
When taking a decompositional approach to design, the designer decom-
poses until he or she reaches components that can be bought or easily built.
In both hardware and software some of the components are very large. In
software, in particular, the design decomposition are often very large soft-
ware units, such as operating systems and databases. Both of these are now
often millions of lines of programming language code and possess rich
functionality. More significantly, they act semiautonomously when used in
a system. An operating system is not a collection of functions to be passively
called by an application. To be sure, that is one of the services offered by
modern operating systems; but modern operating systems also manage pro-
gram memory, schedule program units on processors, and synchronize con-
current objects across multiple processors. An advanced operating system
may present unified services that span many individual computers, possibly
geographically widespread.

These large and autonomous components change architecting because
the architect is forced to adapt to the components. In principle, of course,
the architect and client need not adapt. They can choose to sponsor a from-
scratch development instead. But the cost of attempting to replicate the
enormous software infrastructure that applications now commonly reuse is
prohibitive. For example, the market dominance and complexity of very
large databases forces us to use commercial products in these applications.
The commercial products support particular kinds of data models, but do
not support others. The architecture must take account of the kinds of data
models supported, even when those are not a natural choice for the problem.

Reconciling the hierarchies
Our challenge is to reconcile the systems and software worlds. Because
software is becoming the dominant element, in terms of its cost pacing what
can be developed, one might argue for simply adopting software’s models
and abandoning the classic systems view. This is inappropriate for several
reasons. First, the migration of software to object-oriented, layered structures
is only partial. Much software is procedurally structured, and is likely to
remain so for many years to come. The infrastructure for supporting distrib-
uted, concurrent, object-oriented applications is not mature. While leading-
edge applications take this path, many others with strong reliability or just
predictability requirements will use more traditional structures.

Second, both approaches are fundamentally valid. Both Figures 6.2 and
6.3 are correct views of the system; they just represent different aspects. No
single view can claim primacy. As we move into complex, information-
centric systems we will have to accept the existence of many views, each
representing different concerns, and each targeted at a different stakeholder
audience. The architect, and eventually systems engineers, will have to be
sure the multiple views are consistent and complete with respect to the
stakeholders’ concerns.
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Third, every partitioning has its advantages and drawbacks. Building a
system in which each computational unit has its own software confined
within it has distinct advantages. In that case, each unit will normally have
much greater autonomy (because it has its own software and doesn’t depend
on others). That means each unit can be much more easily outsourced or
independently developed. Also, the system does not become dependent of
the presence of some piece of software infrastructure. Software infrastructure
elements (operating systems and middleware) have a poor record for on-
schedule delivery and feature completeness. Anybody depending on an
advanced feature of an operating system to be delivered more than a year
in the future runs a high risk of being left with nothing when the scheduled
delivery date comes.

Nevertheless, the modern approaches have tremendous advantages in
many situations. Consider the situation when the units in Figure 6.2 share
a great deal of functionality. If separate development teams are assigned to
each, the functionality is likely to be independently developed as many times
as there are units. Redundant development is likely to be the least of the
problems, however, because those independent units probably interact with
each other; the test burden has the potential for rising as the square of the
number of units. Appropriate code sharing, that is, the use of layered archi-
tectures for software, can alleviate both problems.

The role of architecture in software-centered systems
In software as in systems, the architect's basic role is the reconciliation of a
physical form with the client’s needs for function, cost, certification, and
technical feasibility. The mindset is the same as described for system archi-
tecting in general, though the areas of concentration are different. System
architecting heuristics are generally good software heuristics, though they
may be refined and specialized. Several examples are given in Chapter 9. In
addition, there are heuristics that apply particularly to software. Some of
these are mentioned at the end of this chapter.

The architect develops the architecture. Following Brooks’ term,8 the
architect is the user’s advocate. As envisioned in this book, the architect’s
responsibility goes beyond the conceptual integrity of the systems as seen
by the user, to the conceptual integrity of the system as seen by the builder
and other stakeholders. The architect is responsible for both what the system
does as well as how the system does it. But that responsibility extends, on
both counts, only as far as is needed to develop a satisfactory and feasible
system concept. After all, the sum of both is nearly the whole system, and
the architect’s role must be limited if an individual or small team is to carry
it out. The latter role, of defining the overall implementation structure of the
system, is closer to some of the notions of software architecture in recent
literature.

The architect’s realm is where views and models combine. Where models
that integrate disparate views are lacking, the architect can supply the
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insight. When disparate requirements must interact if satisfaction is to be
achieved, the architect’s insight can insure that the right characteristics are
considered foremost; and, moreover, to develop an architecture that can
reconcile the disparate requirements. The perspective required is predomi-
nantly a system perspective. It is the perspective of looking at the software
and its underlying hardware platforms as an integrated whole that delivers
value to the client. Its performance as a whole, behavioral and otherwise, is
what gives it its value.

Architecting for evolution is also an example of the greatest leverage is
at the interfaces heuristic. Make a system evolvable by paying attention to
the interfaces. In software, interfaces are very diverse. With a hardware
emphasis, it is common to think of communication interfaces at the bit, byte,
or message level. But in software communication, interfaces can be much
richer and capture extensively structured data, flow of control, and applica-
tion-specific notions. Current work in distributed computing is a good exam-
ple. The trend in middleware is to find abstractions well above the network
socket that allow flexible composition. Network portable languages like Java
allow each machine to express a common interface for mobile code (the Java
virtual machine).

Programming languages, models, and expressions

Models are languages. A programming language is a model of a computing
machine. Like all languages they have the power to influence, guide, and
restrict our thoughts. Programmers with experience in multiple languages
understand that some problems will decompose easily in one language, but
only with difficulty in another, an example of fitting the architecture of the
solution to that of a prescriptive solution heuristic. The development of
programming languages has been the story of moving successively higher
in abstraction from computing hardware.

The layering of languages is essential to complex software development
because a high-level language is a form of software reuse. Assembly lan-
guages masked machine instructions while procedural languages modeled
computer instructions in a language more like prose. Modern languages
containing object and strong structuring concepts continue the pattern by
providing a richer palette of representation tools for implementing comput-
ing constructs. Each statement in FORTRAN, Pascal, or C reuses the compiler
writer’s machine-level implementation of that construct. Even more impor-
tant examples are the application of specific languages like mathematical
languages or databases. A statement in a mathematical language like MatLab
or Mathematica may invoke a complex algorithm requiring long-term devel-
opment and deep expertise. A database query language encapsulates com-
plex data storage and indexing codes.

One way of understanding this move up the ladder of abstraction is a
famous software productivity heuristic on programmer productivity. A
purely programming oriented statement of the heuristic is:
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Programmers deliver the same number of lines of
code per day regardless of the language they are writ-
ing in.

Hence, to achieve high software productivity, programmers must work
in languages that require few lines of code.9 This heuristic can be used to
examine various issues in language and software reuse. The nature of a
programming language, and the available tools and libraries, will determine
the amount of code needed for a particular application. Obviously, writing
machine code from scratch will require the most code. Moving to high-level
languages like C or Ada will reduce the amount of original code needed,
unless the application is fundamentally one that interacts with the comput-
ing hardware at a very low level. Still less original code will be required if
the language directly embodies application domain concepts, or, equiva-
lently, application-specific code libraries are available.

Application-specific languages imitate domain language already in use
and make it suitable for computing. One of the first and most popular is
spreadsheets. The spreadsheet combines a visual abstraction and a compu-
tational language suited to a range of modeling tasks in business offices,
engineering, and science. An extremely important category is database query
languages. Today it would be quite unusual to undertake an application
requiring sophisticated database functionality and not use an existing data-
base product and its associated query language. Another more recent cate-
gory is mathematical languages. These languages, such as Mathematica,
MacSyma, and MatLab, use well-understood mathematical syntax and then
process those languages into computer-processable form. They allow the
mathematically literate user to describe solutions in a language much closer
to the problem than in a general-purpose programming language.

Application-specific programming languages are likely to play an
increasingly important role in all systems built in reasonably large numbers.
The only impediment in using these abstractions in all systems is the invest-
ment required to develop the language and its associated application gen-
erator and tools. One-of-a-kind systems will not usually be able to carry the
burden of developing a new language along with a new system unless they
fit into a class of system for which a “meta-language” exists. Some work
along these lines has been done, for example, in command and control
systems.10

Architectures, “unifying” models, and visions

Architectures in software can be definitions in terms of tasks and modules,
language or model constructs, or, at the highest abstraction level, metaphors.
Because software is the most flexible and ethereal of media, its architecture,
in the sense of a defining structure, can be equally flexible and ethereal.

The most famous example is the Macintosh desktop metaphor, a true
architecture. To a considerable degree, when the overall human interface
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guidelines are added, this metaphor defines the nature of the system. It
defines the types of information that will be handled, and it defines much
of the logic or processing. The guidelines force operation to be human-
centered; that is, the system continuously parses user actions in terms of the
effects on objects in the environment. As a result, Macintosh, and now
Microsoft Windows, programs are dominated by a main event loop. The
foremost structure the programmer must define is the event loop, a loop in
which system-defined events are sequentially stripped from a queue,
mapped to objects in the environment, and their consequences evaluated
and executed.

The power of the metaphor as architecture is twofold. First, the metaphor
suggests much that will follow. If the metaphor is a desktop, its components
should operate similarly to their familiar physical counterparts. This results
in fast and retentive learning “by association” to the underlying metaphor.
Secondly, it provides an easily communicable model for the system that all
can use to evaluate system integrity. System integrity is being maintained
when the implementation to metaphor is clear. 

Directions in software architecting
Software architecture and architecting has received considerable recent atten-
tion. There have been several special issues of IEEE Software Magazine
devoted to software architecture. Starting with Shaw and Garlan’s book,11 a
whole series has appeared. Much of the current work in software architecture
focuses on architectural structures and their analyses. Much as the term
“architectural style” has definite meaning in civil architecture, usage is
attached to style in current software work. In the terminology of this book,
work on software architecture styles is attempting to find and classify the
high-level forms of software and their application to particular software
problems.

Focusing on architecture is a natural progression of software and pro-
gramming research that has steadily ascended the ladder of abstraction.
Work on structured programming led to structured design and to the mul-
titasking and object-oriented models to be described in Chapter 10. The next
stage of the progression is to further classify the large-scale structures that
appear as software systems become progressively larger and more complex.

Current work in software architecture primarily addresses the product
of architecting (the structure or architecture) rather than the process of gen-
erating it. The published studies cover topics such as classifying architec-
tures, mapping architectural styles to particularly appropriate applications,
and the use of software frameworks to assemble multiple related software
systems. However, newer books are addressing process and the work on
software architecture patterns is effectively work on process in that it pro-
vides directive guidance in forming a software architecture. This book pre-
sents some common threads of the architectural process that underlie the
generation of architectures in many domains. Once a particular domain is
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entered, such as software, the architect should make full use of the under-
stood styles, frameworks, or patterns in that domain.

The flavor of current work in software architecture is best captured by
reviewing some of its key ideas. These include the classification of architec-
tural styles, patterns and pattern languages in software, and software frame-
works.

Architectural styles

At the most general level, a style is defined by its components, connectors,
and constraints. The components are the things from which the software
system is composed. The connectors are the interfaces by which the compo-
nents interact. A style sets the types of components and connectors that will
make up the system. The constraints are the requirements that define system
behavior. In the current usage, the architecture is the definition in terms of
form, which does not explicitly incorporate the constraints. To understand
the constraints one must look to additional views.

As a simple example, consider the structured design models described
previously. A pure structured style would have only one component type,
the routine, and only one connector type, invocation with explicit data pass-
ing. A software system composed only using these components and connec-
tors could be said to be in the structured style; but the notion of style can
be extended to include considerations of its application and deviations. 

David Garlan and Mary Shaw give this discussion of what constitutes
an architectural style*:

“An architectural style then defines a family of such
systems in terms of a pattern of structural organiza-
tion. More specifically, an architectural style deter-
mines the vocabulary of components and connectors
that can be used in instances of that style. Additionally,
a style might define topological constraints on archi-
tectural descriptions (e.g., no cycles). Other constraints
— say, having to do with execution semantics — might
also be part of the style definition.

“Given this framework, we can understand what a
style is by answering the following questions: What is
the structural pattern — the components, connectors,
and topologies? What is the underlying computational
model? What are the essential invariants of the style
— its ‘load bearing walls?’ What are some common
examples of its use? What are the advantages and dis-

* Garlan, D., and Shaw, M., An Introduction to Software Architecture, Technical Report, School
of Computer Science, Carnegie Mellon University, p. 6.
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advantages of using that style? What are some of the
common specializations?”

Garlan and Shaw have gone on to propose several root styles. As an
example, their first style is called “pipe and filter.” The pipe and filter style
contains one type of component, the filter, and one type of connector, the
pipe. Each component inputs and outputs streams of data. All filters can
potentially operate incrementally and concurrently. The streams flow
through the pipes. Likewise, all stream flows are potentially concurrent.
Because each component acts to produce one or more streams from one or
more streams, it can be thought of as an abstract sort of filter. A pipe and
filter system is schematically illustrated in Figure 6.4.

UNIX shell programs and some signal processing systems are common
pipe and filter systems. The UNIX shell provides direct pipe and filter
abstractions with the filters concurrent with UNIX processes, and the pipes
interprocess communication streams. The pipe and filter abstraction is a
natural representation for block-structured signal processing systems in
which concurrent entities perform real-time processing on incoming sam-
pled data streams.

Figure 6.4
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Some other styles proposed include object-oriented, event-based, lay-
ered, and blackboard. An object-oriented architecture is built from compo-
nents that encapsulate both data and function and exchange messages. An
event-based architecture has as its fundamental structure a loop which
receives events (from external interfaces or generated internally), interprets
the events in the context of system state, and takes actions based on the
combination of event and state. Layered architectures emphasize horizontal
partitioning of the system with explicit message passing and function calling
between layers. Each layer is responsible for providing a well-defined inter-
face to the layer above. A blackboard architecture is built from a set of
concurrent components which interact by reading and writing asynchro-
nously to a common area.

Each style carries its advantages and weaknesses. Each of these styles
are descriptions of implementations from an implementer’s point of view,
and specifically from the software implementer’s point of view. They are not
descriptions from the user’s point of view, or even from the point of view
of a hardware implementer on the system. A coherent style, at least of the
type currently described, gives a conceptual integrity that assists the builder,
but may be no help to the user. Having a coherent implementation style may
help in construction, but it is not likely to yield dramatic improvements in
productivity or quality because it does not promise to dramatically cut the
size of what must be implemented.

This is reflective of a large fraction of the current software architecture
literature. The primary focus is on the structure of the software, not on the
structure of the problem that the software is to solve. The architecture
description languages being studied are primarily higher-level or more
abstracted descriptions of programming language constructs. Where user
concerns enter the current discussion is typically through analysis. For exam-
ple, an architecture description language developer may be concerned with
how to analyze the security properties of a system description written in the
language. This approach might be termed “structuralist.” It places the struc-
ture of the software first in modeling, and attempts to derive all other views
from it. There is an intellectual attraction to this approach since the structural
model becomes the root. If the notation for structure can be made consistent,
then the other views derived from it should retain that consistency. There is
no problem of testing consistency across many views written in different
modeling languages. The weakness of the approach is that it forces the
stakeholders other than the software developers to use an unfamiliar lan-
guage and trust unfamiliar analyses. In the security example, instead of using
standard methods from the security community, those concerned with secu-
rity must trust the security analysis performed in the architectural language.
This approach may grow to be accepted by broad communities of stakehold-
ers, but it is likely to be a difficult sell.

In contrast to the perspective that places structure first in architecture,
this book has repeatedly emphasized that only the client’s purpose can be
first. The architect should not be removed from the purpose or requirements,
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the architect should be immersed in them. This is a distinction between
architecting as described here and as is often taught in software engineering.
We do not assume that requirements precede architecture. The development
of requirements is part of architecting, not part of its preconditions.

The ideal style is one that unifies both the user’s and builder’s views.
The mathematical languages mentioned earlier are examples. They structure
the system from both a user’s and an implementer’s point of view. Of course,
the internals of the implementation of such a complex software system will
contain many layers of abstraction. Almost certainly, new styles and abstrac-
tions specific to the demands of implementation in real computers will have
to be created internally. When ideal styles are not available, it is still reason-
able to seek models or architectural views which unify some set of consid-
erations larger than just the software implementer. For implementation of
complex systems it would be a useful topic of research to find models or
styles that encompass a joint hardware-software view.

Architecture through composition

Patterns, styles, and layered abstraction are inherent parts of software prac-
tice. Except for the rare machine-level program, all software is built from
layered abstractions. High-level programming languages impose an intel-
lectual model on the computational machine. The nature of that model
inevitably influences what kinds of programs (systems) are built on the
machine.

The modern trend is to build systems from components at higher and
higher levels of abstraction. This is necessary as no other means is available
to build very large and complex systems within acceptable time and effort
limits. Each high-level library of components imposes its own style and lends
itself to certain patterns. The patterns that match the available libraries are
encouraged, and it may be very difficult to implement architectures that are
not allowed for in the libraries.

Example: Graphical Macintosh and Windows pro-
grams are almost always centrally organized around
an event loop and handlers, a type of event-driven
style. This structure is efficient because the operating
systems provide a built-in event loop to capture user
actions such as mouse clicks and keypresses. However,
since neither has multithreading abstractions (at least
before 1995), a concurrent, interacting object architec-
ture is difficult to construct. Many applications would
benefit from a concurrent interaction object architec-
ture, but these architectures are very difficult to imple-
ment within the constraints of existing libraries. 
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The logical extension is to higher and higher level languages, and from
libraries to application-specific languages that directly match the nature of
the problem they were meant to solve. The modern mathematical software
packages are, in effect, very high-level software languages designed to mimic
the problem they are meant to solve. The object of the packages is to do
technical mathematics. So, rather than provide a language into which the
scientist or engineer must translate mathematics, the package does the math-
ematics. This is similar for computer-aided design packages and, indeed,
most of the shrink-wrap software industry. These packages surround the
computer with a layered abstraction that closely matches the way users are
already accustomed to work.

Actually, the relationship between application-specific programming
language, software package, and user is more symbiotic. Programmers adapt
their programs to the abstractions familiar to the users, but users eventually
adapt their abstractions to what is available and relatively easy to implement.
The best example is the spreadsheet. The spreadsheet as an abstraction
partially existed in paper form as the general ledger. The computer-based
abstraction has proven so logical that users have adapted their thinking
processes to match the structure of spreadsheets. It should probably be
assumed that this type of interactive relationship will accelerate when the
first generation of children to grow up with computers reaches adulthood.

Heuristics and guidelines in software
The software literature is a rich source for heuristics. Most of those heuristics
are specific to the software domain and are often specific to restricted classes
of software-intensive systems. The published sets of software heuristics are
quite large. The newer edition of Brooks's The Mythical Man-Month: Essays
in Software Engineering,12 includes a new chapter, The Propositions of the
Mythical Man-Month: True or False?, which lists the heuristics proposed in
the original work. The new chapters reinforce some of central heuristics and
reject a few others as incorrect.

The heuristics given in "Man-Month" are broad-ranging, covering man-
agement, design, organization, testing, and other topics. Several other
sources give specific design heuristics. The best sources are detailed design
methodologies that combine models and heuristics into a complete approach
to developing software in a particular category or style. Chapter 10 discusses
three of the best documented: ADARTS,* structured design,** and object-

* The published reference on ADARTS, which is quite thorough, is available through the
Software Productivity Consortium, ADARTS Guidebook, Version 2.00.13, Vols. 1-2, September,
1991. ADARTS is an Ada language specific method, though its ideas generalize well to other
languages. In fact, this has been done, although the resulting heuristics and examples are
available only to Software Productivity Consortium members.
** Structured design is covered in many books. The original reference is Yourdon, E. and
Constantine, L L., Structured Design: Fundamentals of a Discipline of Computer Program and Systems
Design, Yourdon Press, 1979.
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oriented.* Even more specific guidelines are available for the actual writing
of code. A book by McConnell13 contains guidelines for all phases and a
detailed bibliography.

From this large source-set, however, there are a few heuristics that par-
ticularly stand out as broadly applicable and as basic drivers for software
architecting.

• Choose components so that each can be implemented independently
of the internal implementation of all others.

• Programmer productivity in lines of code per day is largely indepen-
dent of language. For high productivity, use languages as close to the
application domain as possible.

• The number of defects remaining undiscovered after a test is propor-
tional to the number of defects found in the test. The constant of
proportionality depends on the thoroughness of the test, but is rarely
less than 0.5.

• Very low rates of delivered defects can be achieved only by very low
rates of defect insertion throughout software development, and by
layered defect discovery — reviews, unit test, system test.

• Software should be grown or evolved, not built.
• The cost of removing a defect from a software system rises exponen-

tially with the number of development phases since the defect was
inserted.

• The cost of discovering a defect does not rise. It may be cheaper to
discover a requirements defect in customer testing than in any other
way, hence the importance of prototyping.

• Personnel skill dominates all other factors in productivity and quality.
• Don’t fix bugs later, fix them now.

As has been discussed, the evolvability of software is one of its most
unique attributes. A related heuristic is: a system will develop and evolve
much more rapidly if there are stable intermediate forms than if there are
not. In an environment where wholesale replacement is the norm, what
constitutes a stable form? The previous discussion has already talked about
releases as stable forms and intermediate hardware configurations. From a
different perspective, the stable intermediate forms are the unchanging com-
ponents of the system architecture. These elements that do not change pro-
vide the framework within which the system can evolve. If they are well
chosen, that is, if they are conducive to evolution, they will be stable and
facilitate further development. A sure sign the architecture has been badly
chosen is the need to change it on every major release. The architectural
elements involved could be the use of specific data or control structures,

* Again, there are many books on object-oriented design, and many controversies about its
precise definition and the best heuristics or design rules. Object-Oriented Modeling and Design,
by Rumbaugh, discussed in Chapter 10, is a good introduction, as is the UML documentation
and associated books.
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internal programming interfaces, or hardware-software interface definitions.
Some examples illustrate the impact of architecture on evolution.

Example: The Point-to-Point Protocol (PPP) is a pub-
licly defined protocol for computer networking over
serial connections (such as modems). Its goal is to fa-
cilitate broad multivendor interoperability and to re-
quire as little manual configuration as possible. The
heart of the protocol is the need to negotiate the oper-
ating parameters of a changing array of layered pro-
tocols (for example, physical link parameters,
authentication, IP control, AppleTalk control, compres-
sion, and many others). The list of protocols is contin-
uously growing in response to user needs and vendor
business perceptions. PPP implements negotiation
through a basic state machine that is reused in all pro-
tocols, coupled with a framework for structuring pack-
ets. In a good implementation, a single implementation
of the state machine can be “cloned” to handle each
protocol, requiring only a modest amount of work to
add each new protocol. Moreover, the common format
of negotiations facilitates troubleshooting during test
and operation. During the protocols development the
state machine and packet structure have been mapped
to a wide variety of physical links and a continuously
growing list of network and communication support
protocols.

Example: In the original Apple Macintosh operating
system the architects decided not to use the feature of
their hardware to separate “supervisor” and “user”
programs. They also decided to implement a variety
of application programming interfaces through access
to global variables. These choices were beneficial to the
early versions because they improved performance.
But these same choices (because of backward compat-
ibility demands) have greatly complicated efforts to
implement advanced operating system features such
as protected memory and preemptive multitasking.
Another architectural choice was to define the hard-
ware-software interface through the Macintosh Tool-
box and the published Apple programming guidelines.
The combination has proven to be both flexible and
stable. It has allowed a long series of dramatic hard-
ware improvements, and now a transfer to a new hard-
ware architecture, with few gaps in backward
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compatibility (at least for those developers who
obeyed the guidelines).

Example: The Internet Protocol, combined with the
related Transport Control Protocol (TCP/IP), has be-
come the software backbone of the global Internet. Its
partitioning of data handling, routing decisions, and
flow control has proven to be robust and amenable to
evolutionary development. The combination has been
able to operate across extremely heterogeneous net-
works with equipment built by countless vendors.
While there are identifiable architects of the protocol
suite, control of protocol development is quite distrib-
uted with little central authority. In contrast, the pro-
prietary networking protocols developed and
controlled by several major vendors have frequently
done relatively poorly at scaling to diverse networks.
One limitation in the current IP protocol suite that has
become clear is the inadequacy of its 32-bit address
space. However, the suite was designed from the be-
ginning with the capability to mix protocol versions
on a network. As a result, the deployed protocol ver-
sion has been upgraded several times (and will be
again to IPv6) without interfering with the ongoing
operation of the Internet.

Exercises

1. Consult one or more of the references for software heuristics. Extract
several heuristics and use them to evaluate a software-intensive sys-
tem.

2. Requirements defects that are delivered to customers are the most
costly because of the likelihood they will require extensive rework.
But discovering such defects anytime before customer delivery is
likewise very costly because only the customers’ reaction may make
the nature of the defect apparent. One approach to this problem is
prototyping to get early feedback. How can software be designed to
allow early prototyping and feedback of the information gained with-
out incurring the large costs associated with extensive rework?

3. Pick three software-intensive systems of widely varying scope. For
example, a pen computer-based data entry system for warehouses,
an internetwork communication server, and the flight control software
for a manned space vehicle. What are the key determinants of success
and failure for each system? As an architect, how would these deter-
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minants change your approach to concept formulation and certifica-
tion?

4. Examine some notably successful or unsuccessful software-intensive
systems. To what extent was success or failure due to architectural
(conceptual integrity, feasibility of concept, certification) issues and
to what extent was it due to other software process issues.

5. Are their styles analogous to those proposed for software that jointly
represent hardware and software?
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chapter seven

Collaborative systems

Introduction: collaboration as a category
Most of the systems discussed thus far have been the products of deliberate
and centrally controlled development efforts. There was an identifiable client
or customer (singular or plural), clearly identifiable builders, and users.
Client, in the traditional sense, means the person or organization who spon-
sors the architect and who has the resources and authority to construct the
system of interest. The role of the architect existed, even if it was hard to
trace to a particular individual or organization. The system was the result
of deliberate value judgment by the client and existed under the control of
the client. However, many systems are not under central control, either in
their conception, their development, or their operation. The Internet is the
canonical example, but many others exist, including electrical power sys-
tems, multinational defense systems, joint military operations, and intelli-
gent transportation systems. These systems are all collaborative in the sense
that they are assembled and operate through the voluntary choices of the
participants, not through the dictates of an individual client. These systems
are built and operated only through a collaborative process.

A problem in this area is the lack of standard terminology for categories
of system. Any system is an assemblage of elements that possesses capabil-
ities not possessed by an element. This is just saying that a system possesses
emergent properties, indeed that possessing emergent properties is the defin-
ing characteristic of a system. A microwave oven, a laptop computer, and
the Internet are all systems, but each can have radically different problems
in design and development.

This chapter discusses systems distinguished by the voluntary nature of
the systems assembly and operation. Examples of systems in this category
include most intelligent transport systems,1 military C4I and Integrated Bat-
tlespace,2 and partially autonomous flexible manufacturing systems.3 The
arguments here apply to most of what are often referred to as systems-of-
systems, a term some readers may prefer. One of the authors (Maier) has
discussed the contrast between the concepts elsewhere.4
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What exactly is a collaborative system? In this chapter a system is a
“collaborative system” when its components:

1. Fulfill valid purposes in their own right, and continue to operate to
fulfill those purposes if disassembled from the overall system

2. Are managed (at least in part) for their own purposes rather than the
purposes of the whole; the component systems are separately ac-
quired and integrated but maintain a continuing operational existence
independent of the collaborative system

Misclassification as a “conventional” system vs. a collaborative system
(or vice versa) leads to serious problems. Especially important is a failure to
architect for robust collaboration when direct control is impossible or inad-
visable. This can arise when the developers believe they have greater control
over the evolution of a collaborative system than they actually do. In believ-
ing this, they may fail to ensure that critical properties or elements will be
incorporated by failing to provide a mechanism matched to the problem.

As with other domains, collaborative systems have their own heuristics,
and familiar heuristics may have new applications. To find them for collab-
orative systems we look first at important examples, and then we generalize
to find the heuristics. A key point is the heightened importance of interfaces
and the need to see interfaces at many layers. The explosion of the Internet
and the World Wide Web is greatly facilitating collaborative system construc-
tion, but we find that the “bricks and mortar” of Internet-based collaborative
systems are not at all physical. The building blocks are communication
protocols, often at higher layers in the communications stack that is familiar
from past systems.

Collaborative system examples
Systems built and operated voluntarily are not unusual, even if they seem
very different from classical systems engineering practice. Most of the read-
ers of this book will be living in capitalist democracies where social order
through distributed decisions is the philosophical core of government and
society. Nations differ in the degree to which they choose to centralize vs.
decentralize decision making, but the fundamental principle of organization
is voluntary collaboration. This book is concerned with technological sys-
tems, albeit sometimes systems with heavy social or political overtones. So,
we take as our examples systems whose building blocks are primarily tech-
nical. The initial examples are the Internet, intelligent transportation systems
(for road traffic), and joint air defense systems.

The Internet

When we say “the Internet” we are not referring to the collection of appli-
cations that have become so popular (e-mail, World Wide Web, chats, etc.).
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Instead, we are referring to the underlying communications infrastructure
on which the distributed applications run. A picture of the Internet that tried
to show all of the physical communications links active at one time would
be a sea of lines with little or no apparent order; but, properly viewed, the
Internet has a clear structure. The structure is a set of protocols called TCP/IP
for Transmission Control Protocol/Internet Protocol. Their relationship to
other protocols commonly encountered in the Internet is shown in Figure
7.1.5 The TCP/IP suite includes the IP, TCP, and UDP protocols in the figure.
Note in Figure 7.1 that all of the applications shown ultimately depend on
IP. Applications can use only communications services supported by IP. IP,
in turn, runs on many link and physical layer protocols. IP is “link friendly”
in that it can be made to work on nearly any communications channel. This
has made it easy to distribute widely, but prevents much exploitation of the
unique features of any particular communication channel.

Figure 7.1
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The TCP/IP family protocols are based on distributed operation and
management. All data is encapsulated in packets, which are independently
forwarded through the Internet. Routing decisions are made locally at each
routing node. Each routing node develops its own estimate of the connection
state of the system through the exchange of routing messages (also encap-
sulated as IP packets). The distributed estimates of connection state are not,
and need not be, entirely consistent or complete. Packet forwarding works
in the presence of some errors in the routing tables (although introduction of
bad information can also lead to collapse).

The distributed nature of routing information, and the memoryless for-
warding, allows the Internet to operate without central control or direction.
A decentralized development community matches this decentralized archi-
tecture. There is no central body with coercive power to issue or enforce
standards. There is a central body which issues standards, the Internet Engi-
neering Task Force (IETF), but its practices are unlike nearly any other
standards body. The IETF approach to standards is, fundamentally, to issue
only those which have already been developed and deployed. Almost any-
body can go to the IETF and try and form a working group to build standards
in a given area. The organization accepts nearly any working group that has
the backing of a significant subset of participants. The working group can
issue “internet-drafts” with minimal overhead. For a draft to advance to the
Internet equivalent of a published standard it must be implemented and
deployed by two or more independent organizations. All Internet standards
are available for free, and very strong efforts are made to keep them unen-
cumbered by intellectual property. Proprietary elements are usually accepted
only as optional extensions to an open standard.

Distributed operation, distributed development, and distributed man-
agement are linked. The Internet can be developed in a collaborative way
largely because its operation is collaborative. Because the Internet uses best-
effort forwarding and distributed routing, it can easily offer new services
without changing the underlying protocols. Those new services can be
implemented and deployed by groups that have no involvement in devel-
oping or operating the underlying protocols; but only so long as those new
services do not require any new underlying services. For example, groups
were able to develop and deploy IP-Phone (a voice over the Internet appli-
cation) without any cooperation from TCP/IP developers or even Internet
service providers. However, the IP-Phone application cannot offer any qual-
ity of service guarantees because the protocols it is built on do not offer
simultaneous delay and error rate bounding.

In contrast, networks using more centralized control can offer richer
building block network services, including quality of service guarantees.
However, they are much less able to allow distributed operation. Also, the
collaborative environments that have produced telecommunications stan-
dards have been much slower moving than the Internet standards bodies.
They have not adopted some of the practices of the Internet bodies that have
enabled them to move quickly and rapidly capture market share. Of course,
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some of those practices would threaten the basic structure of the existing
standards organizations.

In principle, a decentralized system like the Internet should be less
vulnerable to destructive collective phenomena and be able to locally adapt
around problems. In practice, both the Internet with its distributed control
model and the telephone system with its greater centralization have proven
vulnerable to collective phenomena. It turns out that distributed control
protocols like TCP/IP are very prone to collective phenomena in both trans-
mission and routing (Bertsekas, 1992, Chapter 6). Careful design and selec-
tion of parameters has been necessary to avoid network collapse phenomena.
One reason is that the Internet uses a “good intentions” model for distributed
control which is vulnerable to nodes that misbehave either accidentally or
deliberately. There are algorithms known which are robust against bad inten-
tions faults, but they have not been incorporated into network designs. The
decentralized nature of the system has made it especially difficult to defend
against coordinated distributed attacks (e.g., distributed denial of service
attacks). Centralized protocols often deal more easily with these attacks since
they have strong knowledge of where connections originate, and can per-
form aggressive load-shedding policies under stress.

Wide area telephone blackouts have attracted media attention and
shown that the more centralized model is also vulnerable. The argument
about decentralized vs. centralized fault tolerance has a long history in the
electric power industry, and even today it has not reached full resolution.

Intelligent transportation systems

The goal of most initiatives in intelligent transportation is to improve road
traffic conditions through the application of information technology. This
subject is large and cannot be addressed in detail here.6 We picked out one
issue to illustrate how a collaborative system may operate, and the architec-
tural challenges in making it happen.

One intelligent transportation concept is called “fully coupled routing
and control.” In this concept a large fraction of vehicles are equipped with
devices that determine their position and periodically report it to a traffic
monitoring center. The device also allows the driver to enter his or her
destination when beginning a trip. The traffic center uses the traffic condi-
tions report to maintain a detailed estimate of conditions over a large met-
ropolitan area. When the center gets a destination message it responds with
a recommended route to that destination, given the vehicle’s current posi-
tion. The route could be updated during travel if warranted. The concept is
referred to as fully coupled because the route recommendations can be
coupled with traditional traffic controls (e.g., traffic lights, on-ramp lights,
reversible lanes, etc.).

Obviously, the concept brings up a wide array of sociotechnical issues.
Many people may object to the lack of privacy inherent in their vehicle
periodically reporting its position. Many people may object to entering their
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destination and having it reported to a traffic control center. Although there
are many such issues, we narrow down, once again, to just one concept that
best illustrates collaborative system principles. The concept only works if:

1. A large fraction of vehicles have, and use, the position reporting
device.

2. A large fraction of drivers enter their (actual) destination when be-
ginning a trip.

3. A large fraction of drivers follow the route recommendations they are
given.

Under current conditions, vehicles on the roads are mostly privately
owned and operated for the benefit of their owners. With respect to the
collaborative system conditions, the concept meets it if using the routing
system is voluntary. The vehicles continue to work whether or not they report
their position and destination; and vehicles are still operated for their own-
ers’ benefit, not for the benefit of some “collective” of road users. So, if we
are architecting a collaborative traffic control system, we have to explicitly
consider how the three conditions above needed to gain the emergent capa-
bilities are ensured.

One way to ensure them is to not make the system collaborative. Under
some social conditions we can ensure all of the above conditions by making
them legally mandatory and providing enforcement. It is a matter of judg-
ment whether or not such a mandatory regime could be imposed.

If one judges that a mandatory regime is impossible, then the system
must be collaborative. Given that it is collaborative, there are many archi-
tectural choices that can enhance the cooperation of the participants. For
example, we can break apart the functions of traffic prediction, routing
advice, and traditional controls and allocate some to private markets. Imag-
ine an urban area with several “Traffic Information Provider” services. These
services are private and subscription-based, receive the position and desti-
nation messages, and disseminate the routing advice. Each driver voluntarily
chooses a service, or none at all. If the service provides accurate predictions
and efficient routes, it should thrive. If it cannot provide good service, it will
lose subscribers and die.

Such a distributed, market-based system may not be able to implement
all of the traffic management policies that a centralized system could. How-
ever, it can facilitate social cooperation in ways the centralized system can-
not. A distributed, market-based system also introduces technical complex-
ities into the architecture that a centralized system does not. In a private
system it must be possible for service providers to disseminate their infor-
mation securely to paying subscribers. In a public, centralized system, infor-
mation on conditions can be transmitted openly. 
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Joint air defense systems

A military system may seem like an odd choice for a collaborative system.
After all, military systems work by command, not voluntary collaboration.
Leaving aside the social issue that militaries must always induce loyalty,
which is a social process, the degree to which there is a unified command
on military systems or operations is variable. A system acquired and oper-
ated on a single service can count on central direction. A system that comes
together only in the context of a multiservice, multinational, joint military
operation cannot count on central control.

All joint military systems and operations have a collaborative element,
but here we consider just air defense. An air defense system must fuse a
complex array of sensors (ground radars, airborne radars, beacon systems,
human observers, and other intelligence systems) into a logical picture of
the airspace and then allocate weapon systems to engage selected targets. If
the system includes elements from several services or nations, conflicts will
arise. Nations, and services, may want to preferentially protect their own
assets. Their command channels and procedures may affect greater self-
protection, even when ostensibly operating solely for the goals of the collec-
tive.

Taking a group of air defense systems from different nations and differ-
ent services and creating an effective integrated system from them is the
challenge. The obvious path might be to try and convert the collection into
something resembling a single service air defense system. This would entail
unifying the command, control, and communications infrastructure. It
would mean removing the element of independent management that char-
acterizes collaborative systems. If this could be done, it is reasonable to
expect that the resulting integrating system would be closer to a kind of
point optimum. But, the difficulties of making the unification are likely to
be insurmountable.

If, instead, we accept the independence, then we can try and forge an
effective collaborative system. The technical underpinnings are clearly
important. If the parts are going to collaborate to create integrated capabil-
ities greater than the sum of the parts, they are going to have to communicate.
So, even if command channels are not fully unified, communications must
be highly interoperable. In this example, as in other sociotechnical examples,
the social side should not be ignored. It is possible that the most important
unifying elements in this example will be social. These might include shared
training or educational background, shared responsibility, or shared social
or cultural background.

Analogies for architecting collaborative systems
One analogy that may apply is the urban planner. The urban planner, like
the architect, develops overall structures. While the architect structures
buildings for effective use by the client, the urban planner structures effective
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communities. The client of an urban planner is usually a community gov-
ernment or one of its agencies. The urban planner’s client and the architect’s
client differ in important respects. The architect’s client is making value
judgments for him or herself, and presumably has the resources to put into
action whatever plan is agreed to with the architect. When the architect’s
plan is received, the client will hire a builder. The urban planner’s client
does not actually build the city. The plan is to constrain and guide many
other developers and architects who will come later, and hopefully guide
their efforts into a whole greater than if there had been no overall plan. The
urban planner and client are making value judgments for other people, the
people who will one day inhabit the community being planned. The urban
planner’s client usually lacks the resources to build the plan, but can certainly
stop something from being built if it is not in the plan. To be successful, the
urban planner and client have to look outward and sell their vision. They
cannot bring it about without others’ aid, and they normally lack the
resources and authority to do it themselves.

Urban planning also resembles architecting in a spiral or evolutionary
development process more than in the waterfall. An urban plan must be
continuously adapted as actual conditions change. Road capacity that was
adequate at one time may be inadequate at another. The mix of businesses
that the community can support may change radically. As actual events
unfold, the plan must adapt and be resold to those who participate in it, or
it will be irrelevant.

Another analogy for collaborative systems is in business relationships.
A corporation with semi-independent division is a collaborative system if
the divisions have separate business lines, individual profit and loss respon-
sibilities, and also collaborate to make a greater whole. Now consider the
problem of a post-merger company. Before the merger the components (the
companies that are merging) were probably centrally run. After the merger
the components may retain significant independence. Now if they are to
jointly create something greater they must do it through a collaborative
system instead of their traditional arrangement. If the executives do not
recognize this and adapt, it is likely to fail. A franchise that grants its fran-
chisees significant independence is also like a collaborative system. It is made
up of independently owned and operated elements which combine to be
something greater than they would achieve individually.

Collaborative system heuristics
As with builder-architecting, manufacturing, sociotechnical, and software-
intensive systems, collaborative systems have their own heuristics. The heu-
ristics discussed here have all been given previously, either in this book or
its predecessor. What is different is their application. Looking at how heu-
ristics are applied to different domains gives a greater appreciation for their
use and applicability in all domains.
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Stable intermediate forms

The heuristic on stable intermediate forms is given (Rechtin, E., 1991) as:

Complex systems will develop and evolve within an
overall architecture much more rapidly if there are
stable intermediate forms than if there are not.

It is good practice in building a home or bridge to have a structure that
is self-supporting during construction. So, in other systems it is important
to design them to be self-supporting before they reach the final configuration.
For better or worse, in collaborative systems it cannot be assumed that all
participants will continue to collaborate. The system will evolve based on
continuous self-assessments of the desirability for collaboration by the par-
ticipants. 

Stability means that intermediate forms should be technically, econom-
ically, and politically self-supporting. Technical stability means that the sys-
tem operates to fulfill useful purposes. Economic stability means that the
system generates and captures revenue streams adequate to maintain its
operation. Moreover, it should be in the economic interests of each partici-
pant to continue to operate rather than disengage. Political stability can be
stated as the system has a politically decisive constituency supporting its
continued operation, a subject we return to in Chapter 12.

• Integrated air defense systems are subject to unexpected and violent
“reconfiguration” in normal use. As a result, they are designed with
numerous fallback modes, down to the anti-aircraft gunner working
on his own with a pair of binoculars. Air defense systems built from
weapon systems with no organic sensing and targeting capability
have frequently failed in combat when the network within which they
operate has come under attack.

• The Internet allows components nodes to attach and detach at will.
Routing protocols adapt their paths as links appear and disappear.
The protocol encapsulation mechanisms of IP allow an undetermined
number of application layer protocols to simultaneously coexist.

Policy triage

This heuristic gives guidance in selecting components, and in setting prior-
ities and allocating resources in development. It is given (Rechtin, E., 1991)as:

The triage: Let the dying die. Ignore those who will
recover on their own. And treat only those who would
die without help.
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Triage can apply to any systems, but especially applies to collaborative
systems. Part of the scope of a collaborative system is deciding what not to
control. Attempting to overcontrol will fail for lack of authority. Under-
control will eliminate the system nature of the integrated whole. A good
choice enhances the desired collaboration.

• Motion Picture Experts Group (MPEG) chose to only standardize the
information needed to decompress a digital video stream.7 The stan-
dard defines the format of the data stream and the operations required
to reconstruct the stream of moving picture frames. However, the
compression process is deliberately left undefined. By standardizing
decompression, the usefulness of the standard for interoperability was
assured. By not standardizing compression, the standard leaves open
a broad area for the firms collaborating on the standard to continue
to compete. Interoperability increases the size of the market, a benefit
to the whole collaborative group, while retaining a space for compe-
tition eliminates a reason to not collaborate with the group. Broad
collaboration was essential both to ensure a large market, and to
ensure that the requisite intellectual property would be offered for
license by the participants.

Leverage at the interfaces

Two heuristics, here combined, discuss the power of the interfaces. The
greatest leverage in system architecting is at the interfaces. The greatest
dangers are also at the interfaces.

When the components of a system are highly independent, operationally
and managerially, the architecture of the system is the interfaces. The archi-
tect is trying to create emergent capability. The emergent capability is the
whole point of the system; but, the architect may only be able to influence
the interfaces among the nearly independent parts. The components are
outside the scope and control of an architect of the whole.

• The Internet oversight bodies concern themselves almost exclusively
with interface standards. Neither physical interconnections nor appli-
cations above the network protocol layers are standardized. Actually,
both areas are the subject of standards, but not the standards process
of the IETF.

One consequence is attention to different elements than in a conventional
system development. For example, in a collaborative system, issues like life
cycle cost are of low importance. The components are developed collabora-
tively by the participants, who make choices to do so independently of any
central oversight body. The design team for the whole cannot choose to
minimize life cycle cost, nor should they, because the decisions that deter-
mine costs are outside their scope. The central design team can choose
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interface standards, and can choose them to maximize the opportunities for
participants to find individually beneficial investment strategies.

Ensuring cooperation

If a system requires voluntary collaboration, the mechanism and incentives
for that collaboration must be designed in.

In a collaborative, the components actively choose to participate or not.
Like a market, the resulting system is the web of individual decisions by the
participants. Thus, the economists’ argument that the costs and benefits of
collaboration should be superior to the costs and benefits of independence
for each participant individually should apply. As an example, the Internet
maintains this condition because the cost of collaboration is relatively low
(using compliant equipment and following addressing rules) and the benefits
are high (access to the backbone networks). Similarly in MPEG video stan-
dards, compliance costs can be made low if intellectual property is pooled,
and the benefits are high if the targeted market is larger than the participants
could achieve with proprietary products. Without the ability to retain a
competitive space in the market (through differentiation on compression in
the case of MPEG), the balance might have been different. Alternatively, the
cost of noncompliance can be made high, though this method is used less
often.

An alternative means of ensuring collaboration is to produce a situation
in which each participant’s well-being is partially dependent on the well-
being on the other participants. This joint utility approach is known, theo-
retically, to produce consistent behavior in groups. A number of social mech-
anisms can be thought of as using this principle. For example, strong social
indoctrination in military training ties the individual to the group and serves
as a coordinating operational mechanism in integrated air defense.

Another way of looking at this heuristic is through the metaphor of the
franchise. The heuristic could be rewritten for collaborative systems as:

Consider a collaborative system a franchise. Always
ask why the franchisees choose to join, and choose to
remain.

Variations on the collaborative theme
The two criteria provide a sharp definition of a collaborative system, but
they still leave open many variations. Some collaborative systems are really
centrally controlled, but the central authority has decided to devolve author-
ity in the service of system goals. In some collaborative systems a central
authority exists, but power is expressed only through collective action. The
participants have to mutually decide and act to take the system in a new
direction. And, finally, some collaborative systems lack any central authority.
They are entirely emergent phenomena.
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A collaborative system where central authority exists and can act is
called a closed collaborative system. Closed collaborative systems are those
in which the integrated system is built and managed to fulfill specific pur-
poses. It is centrally managed during long-term operation to continue to
fulfill those purposes and any new ones the system owners may wish to
address. The component systems maintain an ability to operate indepen-
dently, but their normal operational mode is subordinated to the central
managed purpose. For example, most single-service air defense networks
are centrally managed to defend a region against enemy systems, although
the component systems retain the ability to operate independently, and do
so when needed under the stress of combat.

“Open” collaborative systems are distinct from the closed variety in that
the central management organization does not have coercive power to run
the system. The component systems must, more or less, voluntarily collab-
orate to fulfill the agreed-upon central purposes. The Internet is an open
collaborative system. The IETF works out standards, but has no power to
enforce them. IETF standards work because the participants choose to imple-
ment them without proprietary variations, at least for the most part.

As the Internet becomes more important in daily life, in effect as it
becomes a new utility like electricity or the telephone, it is natural to wonder
whether or not the current arrangement can last. Services on which public
safety and welfare depend are regulated. Public safety and welfare, at least
in industrial countries, is likely to depend on Internet operation in the near
future, if it does not already. So, will the Internet and its open processes
eventually come under regulation? It may, although the most recent trends
have actually been away from centralization. For example, authority over
domain naming, which is central to Internet management, has been broken
up among competing companies at the insistence of the U.S. government in
international negotiations.

Virtual collaborative systems lack both a central management authority
and centrally agreed-upon purposes. Large-scale behavior emerges, and may
be desirable, but the overall system must rely upon relatively invisible mech-
anisms to maintain it.

A virtual system may be deliberate or accidental. Some examples are
the current form of the World Wide Web and national economies. Both
“systems” are distributed physically and managerially. The World Wide Web
is even more distributed than the Internet in that no agency ever exerted
direct central control, except at the earliest stages. Control has been exerted
only through the publication of standards for resource naming, navigation,
and document structure. Although essentially just by social agreement, major
decisions about Web architecture filter through very few people. Web sites
choose to obey the standards or not, at their own discretion. The system is
controlled by the forces that make cooperation and compliance to the core
standards desirable. The standards do not evolve in a controlled way, rather
they emerge from the market success of various innovators. Moreover, the
purposes the system fulfills are dynamic and change at the whim of the users.
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National economies can be thought of as virtual systems. There are
conscious attempts to architect these systems through politics, but the long-
term nature is determined by highly distributed, partially invisible mecha-
nisms. The purposes expressed by the system emerge only through the
collective actions of the system’s participants.

Misclassification
Two general types of misclassification are possible. One is to incorrectly
regard a collaborative system as a conventional system, or the reverse.
Another is to misclassify a collaborative system as directed, voluntary, or
virtual.

In the first case, system vs. collaborative system, consider open source
software. Open source software is often thought of as synonymous with
Linux, a particular open source operating system. Actually, there is a great
deal of open source, “free” software. Software is usually considered open
source if anybody can obtain the source code, use it, modify it, and redis-
tribute it for free. Because Linux has been spectacularly successful in market
share growth, and (not incidentally) in creating initial public offering riches,
many others have tried to emulate the open source model. The open source
model is built on a few basic principles,8 perhaps heuristics. These include:

1. Designs, and initial implementations, should be carried out by gifted
individuals or very small teams.

2. Software products should be released to the maximum possible au-
dienc, as quickly as possible.

3. Users should be encouraged to become testers, and even co-develop-
ers by providing source code.

4. Code review and debugging can be arbitrarily parallalized, at least if
you distribute source code to your reviewers and testers.

5. Incremental delivery of small increments, with a very large us-
er/tester population, leads to very rapid development of high-quality
software.*

Of course, a side effect of this model is losing the ability to make any
significant amount of money distributing software you have written. The
open source movement advocates a counterpoint that effective business
models may still be built on service and customization, but some participants
in the process are accustomed to the profit margins normally gained from
manufacturing software. A number of companies and groups outside of the
Linux community have tried to exploit the success of the Linux model for
other classes of products, with very mixed results.

* The speed and quality of Linux releases can be measured and it is clearly excellent. Groups
of loosely coordinated programmers achieve quality levels equivalent to those of well-controlled
development processes in corporations. This point is even admitted in the Microsoft “Hallow-
een” memos on Linux published at http://www.opensource.org/.
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Some of this can be understood by realizing that open source software
development is a collaborative system. Companies or groups that have open-
sourced their software without success typically run into one of two prob-
lems that limit collaboration. First, many of the corporate open source efforts
are not fully open. For example, both Apple and Sun Microsystems have
open-sourced large pieces of strategic software; but both have released them
under licenses that significantly restrict usage compared to the licenses in
the Linux community. They (Apple and Sun) have argued that their license
structure is necessary to their corporate survival and can lead to a more
practical market for all involved. Their approach is more of a cross between
traditional proprietary development and true open source development.
However, successful open source development is a social phenomenon, and
even the perception that it is less attractive or unfair may be sufficient to
destroy the desired collaboration.

Second, the hypothesis that the quality of open source software is due
to the breadth of its review may simply be wrong. The real reason for the
quality may be that Darwinian natural selection is eliminating poor-quality
packages, the disappointed companies among them. In a corporation a man-
ager can usually justify putting maintenance money into a piece of software
the company is selling, even when the piece is known to be of very low
quality. It will usually seem easier, and cheaper, to pay for “one more fix”
than to start over and rewrite the bad software from scratch, this time
correctly. But in the open source community there are no managers who can
insist that a programmer maintain a particular piece of code. If the code is
badly structured, hard to read, prone to failure, or otherwise unattractive, it
will not attract the volunteer labor needed to keep it in the major distribu-
tions and will effectively disappear. If nobody works on the code it doesn’t
get distributed and natural selection has culled it.

For the second case, classification within the types of collaborative sys-
tem, consider a multiservice integrated battle management system. Military
C4I systems are normally thought of as closed collaborative systems. As the
levels of integration cross higher and higher administrative boundaries, the
ability to centrally control the acquisition and operation of the system less-
ens. In a multiservice battle management system there is likely to be much
weaker central control across service boundaries then within those bound-
aries. A mechanism that ensures components will collaborate within a single
service’s system-of-systems, say a set of command operational procedures,
may be insufficient across services.

In general, if a collaborative system is misclassified as closed, the build-
ers and operators will have less control over purpose and operation than
they may believe. They may use inappropriate mechanisms for insuring
collaboration, and may assume cooperative operations across administrative
boundaries that will not reliably occur in practice. The designer of a directed
system-of-systems can require that an element behave in a fashion not to its
own advantage (at least to an extent). In a collaborative system it is unlikely
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that a component will be induced to behave to its own detriment, but more
likely to the detriment of the system as a whole.

A virtual collaborative system misclassified as open may show very
unexpected emergent behaviors. In a virtual system neither the purpose nor
structure are under direct control, even of a collaborative body. Hence, new
purposes and corresponding behaviors may arise at any time. The large-
scale distributed applications on the Internet, for example, USENET and the
World Wide Web, exhibit this. Both were originally intended for exchange
of research information in a collaborative environment, but are now used
for diverse purposes, some undesired and even illegal.

Standards and collaborative systems
The development of multicompany standards is a laboratory for collabora-
tive systems. A standard is a framework for establishing some collaborative
systems. The standard (e.g., a communication protocol or programming
language standard) creates the environment within which independent
implementations can coexist and compete.

Example: Telephone standards allow equipment pro-
duced by many companies in many countries to oper-
ate together in the global telephone network. A call
placed in one country can traverse switches from dif-
ferent manufacturers and media in different countries
with nearly the same capabilities as if the call were
within a single country on one company’s equipment.

Example: Application programming interface (API)
standards allow different implementations of both
software infrastructure and applications to coexist. So,
operating systems from different vendors can support
the same API and allow compliant applications to run
on any systems from any of the vendors.

Historically, there has been a well-established process for setting stan-
dards. There are recognized national and international bodies with the
responsibility to set standards, such as the International Standards Organi-
zation (ISO), the American National Standards Institute (ANSI), etc. These
bodies have detailed processes that have to be followed. The process defines
how standards efforts are approved, how working groups operate, how
voting is carried out, and how standards are approved. Most of these pro-
cesses are rigorously democratic (if significantly bureaucratic). The intention
is that a standard should reflect the honest consensus of the concerned
community and is thus likely to be adopted.

Since 1985 this established process has been run over, at least within the
computer field, by Internet, Web, and open source processes. The IETF, which
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never votes on a standard, has completely eclipsed the laboriously con-
structed Open Systems Interconnect (OSI) networking standard. The official
standards for operating systems interface have trivial market share com-
pared to the proprietary standards (from Microsoft, Apple, and others) and
the open source standards (Linux).

Since the landscape is still evolving, it may be premature to conclude
what the new rules are. It may be that we are in a time of transition, and
that after the computing market settles down we will return to more tradi-
tional methods. It may be that when the computer and network infrastruc-
ture is recognized as a central part of the public infrastructure (like electricity
and telephones), it will be subjected to similar regulation and will respond
with similar bureaucratic actions. Or, it may be that the traditional standards
bodies will recognize the principles that have made the Internet efforts so
successful and will adapt. Some fusion may prove to be the most valuable
yet. In that spirit, we consider what heuristics may be extracted from the
Internet experience. These heuristics are important not only to standards
efforts, but to collaborative systems as a whole as standards are a special
case of a collaborative system.

Economists call something a “network good” if it increases in value the
wider it is consumed. For example, telephones are network goods. A tele-
phone that doesn’t connect to anybody is not valuable. Two cellular tele-
phone networks that can’t interoperate are much less valuable than if they
can interoperate. The central observation is that:

Standards are network goods, and must be treated as
such.

Standards are network goods because they are useful only to the extent
that other people use them. One company’s networking standard is of little
interest unless other companies support it (unless, perhaps, that company
is a monopoly). What this tells standards groups is that achieving large
market penetration is critically important. Various practices flow from this
realization. The IETF, in contrast to most standards groups, gives its stan-
dards away for free. A price of zero encourages wide dissemination. Also,
the IETF typically gives away reference implementations with its standards.
That is, a proposal rarely becomes a standard unless it has been accompanied
by the release of free source code that implements the standard. The free
source code may not be the most efficient, it may not be fully featured, it
probably does not have all the extras in interface that a commercial product
should have, but it is free and it does provide a reference case against which
everybody else can work. The IETF culture is that proponents of an approach
are rarely given much credibility unless they are distributing implementa-
tions.

The traditional standards organizations protest that they can’t give stan-
dards away because the revenue from standard sales is necessary to support
their development efforts. But the IETF has little trouble supporting its
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efforts. Its working conferences are filled to overflowing and new proposals
and working groups are appearing constantly. Standards bodies don’t need
to make a profit, indeed, they should not. If they can support effective
standards development they are successful, though removing the income of
standards sales might require substantial organizational change.

Returning to collaborative systems in general, the example of standards
shows the importance of focusing on real collaboration, not the image of it.
Commitment to real participation in a collaboration is not indicated by
voting; it is indicated by taking action that costs. Free distribution of stan-
dards and reference implementations lowers entrance costs. The existence
of reference implementations provides clear conformance criteria that can
be explicitly tested.

Conclusions
Collaborative systems are those which exist only through the positive choices
of component operators and managers. These systems have long existed as
part of the civil infrastructure of industrial societies, but have come into
greater prominence as high-technology communication systems have
adopted similar models, centralized systems have been decentralized
through deregulation or divestiture, and formerly independent systems have
been loosely integrated into larger wholes. What sets these systems apart is
their need for voluntary actions on the part of the participants to create and
maintain the whole. This requires that the architect revisit known heuristics
for greater emphasis and additional elaboration. Among the heuristics that
are particularly important are:

1. Stable intermediate forms: A collaborative system designer must pay
closer attention to the intermediate steps in a planned evolution. The
collaborative system will take on intermediate forms dynamically and
without direction as part of its nature.

2. Policy triage: The collaborative system designer will not have coercive
control over the system’s configuration and evolution. This makes
choosing the points at which to influence the design more important. 

3. Leverage at the interfaces: A collaborative system is defined by its
emergent capabilities, but its architects have influence on its interfac-
es. The interfaces, whether thought of as the actual physical intercon-
nections or as higher-level service abstractions, are the primary points
at which the architect can exert control.

4. Ensuring cooperation: A collaborative system exists because the par-
tially independent elements decide to collaborate. The designer must
consider why they will choose to collaborate and foster those reasons
in the design. 

5. A collaboration is a network good; the more of it there is the better.
Minimize entrance costs and provide clear conformance criteria.
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Exercises

1. The Internet, multimedia video standards (MPEG), and the GSM dig-
ital cellular telephone standard are all collaborative systems. All of
them also have identifiable architects, a small group of individuals
who carried great responsibility for the basic technical structures.
Investigate the history of one of these cases and consider how the
practices of the collaborative system architect differ from architects of
conventional systems.

2. In a collaborative system the components can all operate on their own
whether or not they participate in the overall system. Does this rep-
resent a cost penalty to the overall system? Does it matter? Discuss
from the perspective of some of the examples.

3. Collaborative systems in computing and communication usually
evolve much more rapidly than those controlled by traditional regu-
latory bodies, and often more rapidly than those controlled by single
companies. Is this necessary? Could regulatory bodies and companies
adopt different practices that would make their systems as evolvable
as collaborative (e.g., Internet or Linux) while retaining the advantag-
es of the traditional patterns of control?
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Exercise to close part two

Explore another domain much as builder-architected, sociotechnical, manu-
facturing, software, and collaborative systems are explored in this part. What
are the domain’s special characteristics? What more broadly applicable les-
sons can be learned from it? What general heuristics apply to it? Below are
some suggested heuristic domains to explore.

1. Telecommunications in its several forms: point-to-point telephone
network systems, broadcast systems (terrestrial and space), and pack-
et-switched data (the Internet)

2. Electric power, which is widely distributed with collaborative control,
is subject to complex loading phenomena (with a social component),
and is regulated (Hill, D. J., Special Issue on Nonlinear Phenomena
in Power Systems: Theory and Practical Implications, Proc. IEEE, 83,
11, November 1995)

3. Transportation, in both its current form and in the form of proposed
intelligent transportation systems

4. Financial systems, including global trading mechanisms, and the op-
eration of regulated economics as a system

5. Space systems, with their special characteristics of remote operation,
high initial capital investment, vulnerability to interference and at-
tack, and their effects on the design and operation of existing earth-
borne systems performing similar functions

6. Existing and emerging media systems, including the collection of
competing television systems of private broadcast, public broadcast,
cable, satellite, and video recording
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Part three

Models and modeling

Introduction to part three
What is the product of an architect? While it is tempting to regard the
building or system as the architect’s product, the relationship is necessarily
indirect. The system is actually built by the developer. The architect acts to
translate between the problem domain concepts of the client and the solution
domain concepts of the builder. Great architects go beyond the role of inter-
mediary to make a visionary combination of technology and purpose that
exceeds the expectation of builder or client. But the system cannot be built
as envisioned unless the architect has a mechanism to communicate the
vision and track construction against it. The concrete, deliverable products
of the architect, therefore, are models of the system.

Individual models alone are point-in-time representations of a system.
Architects need to see and treat each as a member of one of several progres-
sions. The architect’s first models define the system concept. As the concept
is found satisfactory and feasible, the models progress to the detailed, tech-
nology-specific models of design engineers. The architect’s original models
come into play again when the system must be certified.

A civil architecture analogy

Civil architecture provides a familiar example of modeling and progression.
An architect is retained to ensure that the building is pleasing to the client
in all senses (aesthetically, functionally, and financially). The product of the
architect is intangible; it is the conceptual vision which the physical building
embodies and which satisfies the client. But the intangible product is worth-
less without a series of increasingly detailed tangible products — all models
of some aspect of the building. Table 1 lists some of the models and their
purposes.

The progression of models during the design life cycle can be visualized
as a steady reduction of abstraction. Early models may be quite abstract.
They may convey only the basic floor plan, associated order-of-magnitude
budgets, and renderings encompassing only major aesthetic elements. Early
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models may cover many disparate designs representing optional building
structures and styles. As decisions are made, the range of options narrows
and the models become more specific. Eventually, the models evolve into
construction drawings and itemized budgets and pass into the hands of the
builders. As the builders work, models are used to control the construction
process and to ensure the integrity of the architectural concept. Even when
the building is finished some of the models will be retained to assist in future
project developments, and to act as an as-built record for building alterations.

Guide to part three

While the form of the models differs greatly from civil architecture to aero-
space, computer, or software architectures, their purposes and relationships
remain the same. Part Three discusses the concrete elements of architectural
practice, the models of systems, and their development. The discussion is
from two perspectives broken into four chapters. First, models are treated
as the concrete representations of the various views that define a system.
This perspective is treated in general in Chapter 8, and through domain-
specific examples in Chapter 10. Second, the evolution and development of
models is treated as the core of the architecting process. Chapter 9 develops
the idea of progressive design as an organizing principle for the architecting
process. Community efforts at standardizing architecture representation
models, called architecture description frameworks, is the subject of Chapter
11.

Chapter 8, Representation Models and System Architecting, covers the
types of models used to represent systems and their roles in architecting.
Because architecting is multidimensional and multidisciplinary, an architec-
ture may require many partially independent views. The chapter proposes
a set of six views, and reviews major categories of models for each view. It
also introduces a viewpoint as an organizing abstraction for writing archi-
tecture description standards. Because a coherent and integrated product is
the ultimate goal, the models chosen must also be designed to integrate with
each other. That is, they must define and resolve their interdependencies and
form a complete definition of the system to be constructed.

Table 1  Models and Purposes in Civil Architecture

Model Purpose
Physical scale model Convey look and site placement of building to architect, 

client, and builder
Floor plans Work with client to ensure building can perform basic 

functions desired
External renderings Convey look of building to architect, client, and builder
Budgets, schedules Ensure building meets client’s financial performance 

objectives, manage builder relationship
Construction blueprints Communicate design requirements to builder, provide 

construction acceptance criteria
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Chapter 9, Design Progression in Systems Architecting, looks for prin-
ciples to organize the eclectic architecting process. A particularly useful
principle is that of progression — the idea that models, heuristics, evaluation
criteria, and many other aspects of the system evolve on parallel tracks from
the abstract to the specific and concrete. Progression also helps tie architect-
ing into the more traditional engineering design disciplines. While this book
largely treats system architecting as a general process, independent of
domain, in practice it necessarily is strongly tied to individual systems and
domains. Nevertheless, each domain contains a core of problems not ame-
nable to rational, mechanistic solutions which are closely associated with
reconciling customer or client need and with technical capability. This core
is the province of architecting. Architects are not generalists; they are system
specialists, and their models must refine into the technology-specific models
of the domains in which their systems are to be realized.

Chapter 10 returns to models, now tying the previous two chapters
together by looking at specific modeling methods. This chapter examines a
series of integrating methodologies that illustrate the attributes discussed in
the previous chapters: multiple views, integration across views, and progres-
sion from abstract to concrete implementation. Examples of integrated mod-
els and methods are given for computer-based systems, performance-ori-
ented systems, software-intensive systems, manufacturing systems, and
sociotechnical systems. The first part of Chapter 10 describes two general-
purpose integrated modeling methods: Hatley/Pirbhai and Quantitative
Quality Function Deployment. The former specializes in combining behav-
ioral and physical implementation models, the latter in integrating quanti-
tative performance requirements with behavioral and implementation mod-
els. Subsequent sections describe integrated models for software,
manufacturing systems, and sociotechnical systems.

Chapter 11 looks outward to the community interested in architecture
to review recent work in standardizing architecture descriptions. Standards
for architecture description are usually referred to as architecture description
frameworks. The chapter reviews three of the leading ones, with some men-
tion of others. They are the U. S. Department of Defense Command Control
Communications Computing Intelligence Surveillance and Reconnaissance
architecture framework, the ISO Reference Model for Open Distributed Pro-
cessing, and the IEEE’s P1471 Recommended Practice for Architectural
Description.
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chapter eight

Representation models and 
system architecting

By relieving the mind of all unnecessary work, a good no-
tation sets it free to concentrate on more advanced problems, 
and in effect increases the mental power of the [human] race.

Alfred North Whitehead

Introduction: roles, views, and models
Models are the primary means of communication with clients, builders, and
users; models are the language of the architect. Models enable, guide, and
help assess the construction of systems as they are progressively developed
and refined. After the system is built, models, from simulators to operating
manuals, help describe and diagnose its operation.

To be able to express system imperatives and objectives and manage
system design, the architect should be fluent, or at least conversant, with all
the languages spoken in the long process of system development. These
languages are those of system specifiers, designers, manufacturers, certifiers,
distributors, and users.

The most important models are those which define the critical acceptance
requirements of the client and the overall structure of the system. The former
are a subset of the entirety of the requirements while the latter are a subset
of the complete, detailed system design. Because the architect is responsible
for total system feasibility, the critical portions may include highly detailed
models of components on which success depends, and abstract, top-level
models of other components.

Models can be classified by their roles or by their content. Role is impor-
tant in relating models to the tasks and responsibilities not only of architects,
but of many others in the development process. Of special importance to
architects are modeling methods that tie otherwise separate models into a
consistent whole.
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Roles of models
Models fill many roles in system architecting, including:

1. Communication with client, users, and builders
2. Maintenance of system integrity through coordination of design ac-

tivities
3. Assisting design by providing templates, and organizing and record-

ing decisions
4. Exploration and manipulation of solution parameters and character-

istics; guiding and recording aggregation and decomposition of sys-
tem functions, components, and objects

5. Performance prediction and identification of critical system elements
6. Providing acceptance criteria for certification for use

These roles are not independent; each relates to the other. But the fore-
most role is to communicate. The architect discusses the system with the
client, the users (if different), the builders, and possibly many other interest
groups. Models of the system are the medium of all such communication.
After all, the system itself won’t come into being for some time to come. The
models used for communication become documentation of decisions and
designs and, thus, vehicles for maintaining design integrity. Powerful, well-
chosen models will assist in decision making by providing an evocative
picture of the system in development. They will also allow relevant param-
eters and characteristics to be manipulated and the results seen in terms
relevant to client, user, or builder.

Communication with the client has two goals. First, the architect must
determine the client’s objectives and constraints. Second, the architect must
insure that the system to be built reflects the value judgments of the client
where perfect fulfillment of all objectives is impossible. The first goal requires
eliciting information on objectives and constraints and casting it into forms
useful for system design. The second requires that the client perceive how
the system will operate (objectives and constraints) and that the client can
have confidence in the progress of design and construction. In both cases
models must be clear and understandable to the client, expressible in the
client’s own terminology. It is desirable that the models also be expressive
in the builder’s terms, but because client expressiveness must take priority,
proper restatement from client to builder language usually falls to the archi-
tect.

User communication is similar to client communication. It requires the
elicitation of needs and the comparison of possible systems to meet those
needs. When the client is the user this process is simplified. When the client
and the users are different (as was discussed in Chapter 5 on sociotechnical
systems) their needs and constraints may conflict. The architect is in the
position to attempt to reconcile these conflicts.
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In two-way communication with the builder, the architect seeks to insure
that the system will be built as conceived and that system integrity is main-
tained. In addition, the architect must learn from the builder those technical
constraints and opportunities that are crucial in insuring a feasible and
satisfactory design. Models that connect the client and the builder are par-
ticularly helpful in closing the iterations from builder technical capability to
client objectives.

One influence of the choice of a model set is the nature of its associated
“language” for describing systems. Given a particular model set and lan-
guage, it will be easy to describe some types of systems and awkward to
describe others, just as natural languages are not equally expressive of all
human concepts. The most serious risk in the choice is that of being blind
to important alternate perspectives due to long familiarity (and often suc-
cess) with models, languages, and systems of a particular type.

Models, viewpoints, and views
Chapters 8-10 discuss this book’s approach to modeling in systems archi-
tecting. Chapter 11 looks outward to the community to review other impor-
tant approaches and draw contrasts. Unfortunately, there is a lot of variation
in the usage of important terms. There are three terms that are important in
setting up a modeling framework: model, view, and viewpoint. We use the
definitions of model, view, and viewpoint taken from IEEE standards. A
model is an approximation, representation, or idealization of selected aspects
of the structure, behavior, operation, or other characteristics of a real-world
process, concept, or system (IEEE 610.12-1990). A view is a representation of
a system from the perspective of related concerns or issues (IEEE 1471-2000).
A viewpoint is a template, pattern, or specification for constructing a view
(IEEE 1471-2000).

As discussed above, a model is just a representation of something, in
our case some aspect of the architecture of a system. The modeling languages
of interest have a vocabulary and a grammar. The words are the parts of a
model, and the grammar defines how the words can be linked. Beyond that,
a modeling language has to have a method of interpretation, and the models
produced have to mean something, typically within some domain. For exam-
ple, in a block diagramming method, the words are the kinds of blocks and
lines and the grammar is the allowed patterns by which they can be con-
nected. The method also has to define some correspondence between the
blocks, lines, and connections to things in the world. A physical method will
have a correspondence to physically identifiable things. A functional dia-
gramming technique has a correspondence to more abstract entities — the
functions that the system carries out.

A view is just a collection of models that share the property that they
are relevant to the same concerns of a system stakeholder. For example, a
functional view collects the models that represent a system function. An
objectives view collects the models which define the objectives to be met by
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building the system. The idea of view is needed because complex systems
tend to have complex models and require a higher-level organizing element.

View is inspired by the familiar idea of architectural views. An architect
produces elevations, floor plans, and other representations that show the
system from a particular perspective. The idea of view here generalizes this
when physical structure is no longer primary.

Viewpoint is an abstraction of view across many systems. It is important
only in defining standards for architecture description, so we defer its use
until later.

Classification of models by view
A view describes a system with respect to some set of attributes or concerns.
The set of views chosen to describe a system is variable. A good set of views
should be complete (cover all concerns of the architect’s stakeholders) and
mostly independent (capture different pieces of information). Table 8.1 lists
the set of views chosen here as most important to architecting. A system can
be “projected” into any view, possibly in several ways. The projection into
views, and the collection of models by views, is shown schematically in
Figure 8.1. Each system has some behavior (abstracted from implementa-
tion), has a physical form, retains data, etc. Views are composed of models.
Not all views are equally important to system developmental success, nor
will the set be constant over time. For example, a system might be behav-
iorally complex but have relatively simple form. Views that are critical to
the architect may play only a supporting role in full development.

Although any system can be described in each view, the complexity and
value of each view’s description can differ considerably. Each class of sys-
tems emphasizes particular views and has favored modeling methods, or
methods of representation within each view. The architect must determine
which views are most important to the system and its environment and be
expert in the relevant models. While the views are chosen to be reasonably
independent, there is extensive linkage among views. For example, the
behavioral aspects of the system are not independent of the system’s form.
The system can produce the desired behavior only if the system’s form

Table 8.1  Major System or Architectural Views

Perspective or view Description
Purpose/objective What the client wants
Form What the system is
Behavioral or functional What the system does
Performance objectives or 
requirements

How effectively the system does it

Data The information retained in the system and its 
interrelationships

Managerial The process by which the system is constructed and 
managed
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supports it. This linkage is conceptually similar to a front and side view
being linked (both show vertical height), even though they are observations
from orthogonal directions.

The following sections describe models used for representing a system
in each of the views of Table 8.1. The section for each view defines what
information is captured by the view, describes the modeling issues within
that view, and lists some important modeling methods. Part of the architect’s
role is to determine which views are most critical to system success, build
models for those views, and then integrate as necessary to maintain system
integrity. The integration across views is a special concern of the architect.

Note to the reader

The sections to follow, which describe models for each view, are difficult to
understand without examples meaningful to each reader. Rather than trying
to present detailed examples of each for each of several system domains (a
task which might require its own book), we suggest the reader do so on his
or her own. The examples given in this chapter are not detailed and are
chosen to be understandable to the widest possible audience. Chapter 10
describes, in detail, specific modeling methods that span and integrate mul-
tiple views. The methods of Chapter 10 are what the architect should strive
for, an integrated picture of all important aspects of a system.

Figure 8.1
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As stated in the introduction, Part Three can be read several ways. The
chapters can be read in order, which captures the intellectual thread of model
concepts, modeling processes and heuristics, specific modeling methods, and
organizing frameworks. In this case it is useful to read ahead to Exercises 1
and 2 at the end of this chapter and work them while reading each section to
follow. The remaining exercises are intended for after the chapter is read,
although some may be approached as each section is completed. An alterna-
tive is to read Chapters 8 and 10 in parallel, reading the specific examples of
models in Chapter 10 as the views are covered in Chapter 8. Because the
approach of Chapter 10 is to look at integrated models, models that span
views, a one-for-one correspondence is impossible. The linear approach is
probably best for those without extensive background in modeling methods.
Those with a good background in integrated modeling methods can use either.

Objectives and purpose models

The first modeling view is that of objectives and purposes. Systems are built
for useful purposes; that is for what the client wants. Without them the system
cannot survive. The architect’s first and most basic role is to match the
desirability of the purposes with the practical feasibility of a system to fulfill
those purposes. Given a clearly identifiable client, the architect’s first step is
to work with that client to identify the system’s objectives and priorities.
Some objectives can be stated and measured very precisely. Others will be
quite abstract and impossible to express quantitatively. A civil architect is
not surprised to hear a client’s objective is for the building to “be beautiful”
or to “be in harmony with the natural state of the site.” The client will be
very unhappy if the architect tells the client to come back with unambiguous
and testable requirements. The architect must prepare models to help the
client to clarify abstract objectives. Abstract objectives require provisional
and exploratory models, models which may fall by the wayside later as the
demands and the resulting system become well understood. Ideally, all
iterations and explorations become part of the systems document set. How-
ever, to avoid drowning in a sea of paper, it may be necessary to focus on a
limited set. If refinement and tradeoff decisions (the creation of concrete
objectives from abstract ones) are architectural drivers, they must be main-
tained as it is likely the key decisions will be repeatedly revisited.

Modeling therefore begins by restating and iterating those initial uncon-
strained objectives from the client’s language until a modeling language and
methodology emerges, the first major step closer to engineering develop-
ment. Behavioral objectives are restated in a behavioral modeling language.
Performance requirements are formulated as measurable satisfaction mod-
els. Some objectives may translate directly into physical form, others into
patterns of form that should be exhibited by the system. Complex objectives
almost invariably require several steps of refinement and, indeed, may
evolve into characteristics or behaviors quite different from their original
statement.
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A low technology example (though only by modern standards) is the
European cathedrals of the Middle Ages. A cathedral architect considered a
broad range of objectives. First, a cathedral must fulfill well-defined com-
munity needs. It must accommodate celebration day crowds, serve as a
suitable seat for the bishop, and operate as a community centerpiece. But,
in addition, cathedral clients of that era emphasized that the cathedral “com-
municate the glory of God and reinforce the faithful through its very pres-
ence.”

Accommodation of holiday celebrants is a matter of size and floor layout.
It is an objective that can be implemented directly and requires no further
significant refinement. The clients — the church and community leaders —
because of their personal familiarity with the functioning of a cathedral,
could determine for themselves the compliance of the cathedral by examin-
ing the floor plan. But what of defining a building that “glorifies God?” This
is obviously a property only of the structure as a whole — its scale, mass,
space, light, and integration of decoration and detail. Only a person with an
exceptional visual imagination is able to accurately envision the aesthetic
and religious impact of a large structure documented only through drawings
and renderings. Especially in those times, when architectural styles were
new and people traveled little, an innovative style would be an unprece-
dented experience for perhaps all but the architect.

While refinement of objectives through models is central to architecting,
it is also a source of difficulty. A design that proceeds divorced from direct
client relevance tends to introduce unnecessary requirements that complicate
its implementation. Experience has shown that retaining the client’s lan-
guage throughout the acquisition process can lead to highly efficient,
domain-specific architectures; for example, in communication systems.

Example: domain-specific software architectures1 are
software application generation frameworks in which
domain concepts are embedded in the architectural
components. The framework is used to generate a
product line of related applications in which the client
language can be used nearly directly in creating the
product. For a set of message handler applications
within command and control systems the specification
complexity was reduced 50:1.

One measure of the power of a design and implementation method is
its ability to retain the original language. But this poses a dilemma. Retention
implies the availability of proven, domain-specific methods and engineering
tools. But unprecedented systems by definition are likely to be working in
new domains, or near the technical frontiers of existing domains. By the very
nature of unprecedented system development, such methods and tools are
unlikely to be available. Consequently, models and methodologies must be
developed and pass through many stages of abstraction, during which the
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original relevance can easily be lost. The architect must therefore search out
domain-specific languages and methods that can somehow maintain the
chain of relevance throughout.

An especially powerful, but challenging, form of modeling converts the
client/user’s objectives into a meta-model or metaphor that can be directly
implemented. A famous example is the desktop metaphor adopted for Mac-
intosh computers. The user’s objective is to use a computer for daily, office-
oriented task automation. The solution is to capture the user’s objectives
directly by presenting a simulation of a desktop on the computer display.
Integrity with user needs is automatically maintained by maintaining the
fidelity of a desktop and file system familiar to the user.

Models of form

Models of form represent physically identifiable elements of, and interfaces
to, what will be constructed and integrated to meet client objectives. Models
of form are closely tied to particular construction technologies, whether the
concrete and steel of civil architecture or the less tangible codes and manuals
of software systems. Even less tangible physical forms are possible, such as
communication protocol standards, a body of laws, or a consistent set of
policies.

Models of form vary widely in their degree of abstraction and role. For
example, an abstract model may convey no more than the aesthetic feel of
the system to the client. A dimensionally accurate but hollow model can
assure proper interfacing of mechanical parts. Other models of form may be
tightly coupled to performance modeling, as in the scale model of an airplane
subjected to wind tunnel testing. The two categories of models of form most
useful in architecting are scale models and block diagrams.

Scale models
The most literal models of form are scale models. Scale models are widely
used for client and builder communication, and may function as part of
behavioral or performance modeling as well. Some major examples are
shown below:

1. Civil architects build literal models of buildings, often producing
renderings of considerable artistic quality. These models can be ab-
stracted to convey the feel and style of a building, or can be precisely
detailed to assist in construction planning.

2. Automobile makers mock-up cars in body-only or full running trim.
These models make the auto show circuit to gauge market interest,
or are used in engineering evaluations.

3. Naval architects model racing yachts to assist in performance evalu-
ation. Scale models are drag tested in water tanks to evaluate drag
and handling characteristics. Reduced or full-scale models of the deck
layout are used to run simulated sail handling drills.
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4. Spacecraft manufacturers use dimensionally accurate models in fit
compatibility tests and in crew extra-vehicular activity rehearsals.
Even more important are ground simulators for on-orbit diagnostics
and recovery planning.

5. Software developers use prototypes that demonstrate limited charac-
teristics of a product that are equivalent to scale models. For example,
user interface prototypes that look like the planned system but do not
possess full functionality, non-real-time simulations that carry exten-
sive functionality but do not run in real-time, or just a set of screen
shots with scenarios for application use.

Physical scale models are gradually being augmented or replaced by
virtual reality systems. These “scale” models exist only in a computer and
in the viewer’s mind. They may, however, carry an even stronger impression
of reality than a physical scale model because of the sensory immersion
achievable.

Block diagrams
A scale model of a circuit board or a silicon chip is unlikely to be of

much interest alone, except for expanded scale plots used to check for layout
errors. Nonetheless, physical block diagrams are ubiquitous in the electronics
industry. To be a model of form, as distinct from a behavioral model, the
elements of the block diagram must correspond to physically identifiable
elements of the system. Some common types of block diagrams include:

1. System interconnect diagrams that show specific physical elements
(modules) connected by physically identifiable channels. On a high-
level diagram a module might be an entire computer complex, and a
channel might be a complex internetwork. On a low level the modules
could be silicon chips with specific part numbers and the channels’
pin-assigned wires.

2. System flow diagrams that show modules in the same fashion as
interconnect diagrams but illustrate the flow of information among
modules. The abstraction level of information flow defined might be
high (complex messaging protocols) or low (bits and bytes). The two
types of diagrams (interconnect and flow) are contrasted in Figure
10.3.

3. Structure charts,2 task diagrams,3 and class and object diagrams4 that
structurally define software systems and map directly to implemen-
tation. A software system may have several such logically indepen-
dent diagrams, each showing a different aspect of the physical struc-
ture; for example, diagrams that show the invocation tree, the
inheritance hierarchy, or the “withing” relationships in an Ada pro-
gram. Examples of several levels of physical software diagram are
given in Figures 10.5 and 10.6.
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5. Manufacturing process diagrams are drawn with a standardized set
of symbols. These represent manufacturing systems at an intermedi-
ate level of abstraction, showing specific classes of operation but not
defining the machine or the operational details.

Several authors have investigated formalizing block diagrams over a
flexible range of architectural levels. The most complete, with widely pub-
lished examples, is that of Hatley and Pirbhai.5 Their method is discussed
in more depth in Chapter 10 as an example of a method for integrating a
multiplicity of architectural views across models. A number of other meth-
ods and tools that add formalized physical modeling to behavioral modeling
are appearing. Many of these are commercial tools, so the situation is fluid
and their methodologies are often not fully defined outside of the tools
documentation. Some other examples are the system engineering extensions
to ADARTS (described later in the context of software), RDD-100,6 and
StateMate.7

An attribute missing in most block diagram methods is the logic of data
flow. The diagram may show that a data item flow from module A to module
B, but does not show who controls the flow. Control can be of many types.
A partial enumeration includes:

Soft push: The sender sends and the item is lost if the receiver is not
waiting to receive it

Hard push: The sender sends and the act of sending interrupts the
receiver who must take the data

Blocking pull: The receiver requests the data and waits until the sender
responds

Non-blocking pull: The receiver requests the data and continues on
without it if the sender does not send

Hard pull: When the receiver requests the data the sender is interrupted
and must send

Queuing channel: The sender can push data onto the channel without
interrupting the receiver and with data being stored in the channel;
the receiver can pull data from the channel’s store

Of course, there are many other combinations as well. The significance
of the control attribute is primarily in interfacing to disciplinary engineers,
especially software engineers. In systems whose development cost is dom-
inated by software, which is now virtually all complex systems, it is essential
that systems activities provide the information needed to enable software
architecting as quickly as possible. One of the elements of a software archi-
tecture is the concurrency and synchronization model. The constraints on
software concurrency and synchronization are determined by the data flow
control logic around the software-hardware boundary. So, it is just the kind
of information on data flow control that is needed to better match systems
activities to software architecture.
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Behavioral (functional) models

Functional or behavioral models describe specific patterns of behavior by
the system. These are models of what the system does (how it behaves) as
opposed to what the system is (which are models of form). Architects increas-
ingly need behavioral models as systems become more intelligent and their
behavior becomes less obvious from the systems form. Unlike a building, a
client cannot look at a scale model of a software system and infer how the
system behaves. Only by explicitly modeling the behavior can it be under-
stood by the client and builder.

Determining the level of detail or rigor in behavioral specification
needed during architecting is an important choice. Too little detail or rigor
will mean the client may not understand the behavior being provided (and
possibly be unsatisfied) or the builder may misunderstand the behavior
actually required. Too much detail or rigor may render the specification
incomprehensible — leading to similar problems — or unnecessarily delay
development. Eventually, when the system is built, its behavior is precisely
specified (if only by the actual behavior of the built system).

From the perspective of architecting, what level of behavioral refinement
is needed? The best guidance is to focus on the system acceptance require-
ments; to ensure the acceptance requirements are passable but complete. Ask
what behavioral attributes of the system the client will demand be certified
before acceptance and determine through what tests those behavioral
attributes can be certified. The certifiable behavior is the behavior the client
will get, no more and no less.

Example: In software systems with extensive user in-
terface components, it has been found by experience
that only a prototype of the interface adequately con-
veys to users how the system will work. Hence, to
ensure not just client acceptance, but user satisfaction,
an interface prototype should be developed very early
in the process. Major office application developers
have videotaped office workers as they use prototype
applications. The tapes are then examined and scored
to determine how effective various layouts were at
encouraging users to make use of new features, how
rapidly they were able to work, etc.

Example: Hardware and software upgrades to military
avionics almost always must remain backward com-
patible with other existing avionics systems and main-
tain support for existing weapon systems. The
architecture of the upgrade must reflect the behavioral
requirements of existing system interface. Some may
imply very simple behavioral requirements, like pro-
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viding particular types of information on a communi-
cation bus. Others may demand complex behaviors,
such as target handover to a weapon requiring target
acquisition, queuing of the weapon sensor, real-time
synchronization of the local and weapon sensor feeds,
and complex launch codes. The required behavior
needs to be captured at the level required for client
acceptance, and at the level needed to extract architec-
tural constraints.

Behavioral tools of particular importance are threads or scenarios, data
and event flow networks, mathematical systems theory, autonomous system
theory, and public choice and behavior models.

Threads and scenarios
A thread or scenario is a sequence of system operations. It is an ordered list
of events and actions which represents an important behavior. It normally
does not contain branches; that is, it is a single serial scenario of operation,
a stimulus/response thread. Branches are represented by additional threads.
Behavioral requirements can be of two types. The first type is to require that
the system must produce a given thread; that is, to require a particular system
behavior. The alternative is to require that a particular thread not occur. For
example, that a hazardous command never be issued without a positive
confirmation having occurred first. The former is more common, but the
latter is just as important. 

Threads are useful for client communication. Building the threads can
be a framework for an interactive dialog with the client. For each input, pose
the question, “When this input arrives what should happen?” Trace the
response until an output is produced. In a similar fashion, trace outputs
backward until inputs are reached. The list of threads generated in this way
becomes part of the behavioral requirements.

Threads are also useful for builder communication. Even if not complete,
they directly convey desired system behavior. They also provide useful tools
during design reviews and for test planning. Reviewers can ask that design-
ers walk through their design as it would operate in each of a set of selected
threads. This provides a way for reviewers to survey a design using criteria
very close to the client’s own language. Threads can be used similarly as
templates for system tests, ensuring that the tests are directly tied to the
client’s original dialog.

Another name for behavioral specification by threads and scenarios is
use-cases. Use-case has become the popular term for behavioral specification
by example. The term originally comes from the object-oriented software
community, but it has been applied much more widely. The normal form of
a use-case is the listing of an example dialog between the system and an
actor. An actor is a human user of the system. The use-case consists of the
sequence of messages passed between the system and actor, augmented by
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additional explanation in ways specific to each method. Use-cases are
intended to be narrative. That is, they are specifically intended to be written
in the language of users and to be understandable by them. When a system
is specified by many use-cases, and the use-cases interact, there are a number
of diagrams which can be used to specify the connections. Chapter 10 briefly
discusses these within the section on UML.

Data and event flow networks
A complex system can possess an enormous (perhaps infinite) set of threads.
A comprehensive list may be impossible, yet without it the behavioral spec-
ification is incomplete. Data and event flow networks allow threads to be
collapsed into more compact but complete models. Data flow models define
the behavior of a system by a network of functions or processes that exchange
data objects. The process network is usually defined in a graphical hierarchy,
and most modern versions add some component of finite state machine
description. Current data flow notations are descendants either of DeMarco’s
data flow diagram (DFD) notation8 or Functional Flow Block Diagrams
(FFBD).9 Chapter 10 gives several examples of a data flow models and their
relationships with other model types. Figures 10.1 and 10.2 show examples
of data flow diagrams for an imaging system. Both the DFD and FFBD
methods are based on a set of root principles.

1. The systems functions are decomposed hierarchically. Each function
is composed of a network of subfunctions until a “simple” description
can be written in text.

2. The decomposition hierarchy is defined graphically.
3. Data elements are decomposed hierarchically and are separately de-

fined in an associated “data dictionary.”
4. Functions are assumed to be data-triggered. A process is assumed to

execute any time its input data elements are available. Finer control
is defined by a finite state control model (DFD formalism) or in the
graphical structure of the decomposition (FFBD formalism).

5. The model structure avoids redundant definition. Coupled with
graphical structuring, this makes the model much easier to modify.

Mathematical systems theory
The traditional meaning of system theory is the behavioral theory of multi-
dimensional feedback systems. Linear control theory is an example of system
theory on a limited, well-defined scale. Models of macroeconomic systems
and operations research are also system theoretic models, but on a much
larger scale.

System theoretic formalisms are built from two components:

1. A definition of the system boundary in terms of observable quantities,
some of which may be subject to user or designer control
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2. A mathematical machinery that describes the time evolution (the
behavior) of the boundary quantities given some initial or boundary
conditions and control strategies

There are three main mathematical system formalisms. They are distin-
guished by how they treat time and data values.

1. Continuous systems: These are the systems classically modeled by
differential equations, linear and nonlinear. Values are continuous
quantities and are computable for all times.

2. Temporally discrete (sampled data) systems: These are systems with
continuously valued elements measured at discrete time points. Their
behavior is described by difference equations. Sampled data systems
are increasingly important since they are the basis of most computer
simulations and nearly all real-time digital signal processing.

3. Discrete event systems: These are systems in which some or all of the
quantities take on discrete values at arbitrary points in time. Queuing
networks are the classical example. Asynchronous digital logic is a
pure example of a discrete event system. The quantities of interest
(say, data packets in a communication network) move around the
network in discrete units, but they may arrive or leave a node at an
arbitrary, continuous time.

Continuous systems have a large and powerful body of theory. Linear
systems have comprehensive analytical and numerical solution methods,
and an extensive theory of estimation and control. Nonlinear systems are
still incompletely understood, but many numerical techniques are available,
some analytical stability methods are known, and practical control
approaches are available. Similar results are available for sampled data sys-
tems. Computational frameworks exist for discrete event systems (based on
state machines and Petri Nets), but are less complete than those for differ-
ential or difference equation systems in their ability to determine stability
and synthesize control laws. A variety of simulation tools is available for all
three types of systems. Some tools attempt to integrate all three types into
a single framework, though this is difficult.

Many modern systems are a mixture of all three types. For example,
consider a computer-based temperature controller for a chemical process.
The complete system may include continuous plant dynamics, a sampled
data system for control under normal conditions, and discrete event control-
ler behavior associated with threshold crossings and mode changes. A com-
prehensive and practical modern system theory should answer the classic
questions about such a mixed system — stability, closed loop dynamics, and
control law synthesis. No such comprehensive theory exists, but constructing
one is an objective of current research. Manufacturing systems are a special
example of large-scale mixed systems for which qualitative system under-
standing can yield architectural guidance.
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Autonomous agent, chaotic systems
System-level behavior, as defined in Chapter 1, is behavior not contained in
any system component, but which emerges only from the interaction of all
the components. A class of system of recent interest is that in which a few
types of multiply-replicated, individually relatively simple, components
interact to create essentially new (emergent) behaviors. Ant colonies, for
example, exhibit complex and highly organized behaviors that emerge from
the interaction of behaviorally simple, nearly identical, sets of components
(the ants). The behavioral programming of each individual ant, and its cha-
otic local interactions with other ants and the environment, is sufficient for
complex high-level behaviors to emerge from the colony as a whole. There
is considerable interest in using this truly distributed architecture, but tra-
ditional top-down, decomposition-oriented models and their bottom-up,
integration-oriented complements do not describe it. Some attempts have
been made to build theories of such systems from chaos methods. Attempts
have also been made to find rules or heuristics for the local intelligence and
interfaces necessary for high-level behaviors to emerge.

Example: In some prototype flexible manufacturing
plants, instead of trying to solve the very complex
work scheduling problem, autonomous controllers
schedule through distributed interaction. Each work
cell independently “bids” for jobs on its input. Each
job moving down the line tries to “buy” the production
and transfer services it needs to be completed.10 In-
stead of central scheduling, the equilibrium of the
pseudo-economic bid system distributes jobs and fills
work cells. Experiments have shown that rules can be
designed that result in stable operation, near optimal-
ity of assignment, and very strong robustness to job
changes and work cell failure. But the lack of central
direction makes is difficult to assure particular opera-
tional aspects; for example, to assure that “oddball”
jobs won’t be ignored for the apparent good of the
mean.

Public choice and behavior models
Some systems depend on the behavior of human society as part of the
system. In such cases the methods of public choice and consumer analysis
may need to be invoked to understand the human system. These methods
are often ad hoc, but many have been widely used in marketing analysis by
consumer product companies.

Example: One concept in intelligent transportation sys-
tems proposals is the use of centralized routing. In a
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central routing system each driver would inform the
center (via some data network) of his beginning loca-
tion and his planned destination for each trip. The
center would use that information to compute a route
for each vehicle and communicate the selected route
back to the driver. The route might be dynamically
updated in response to accidents or other incidents. In
principle, the routing center could adjust routes to op-
timize the performance of the network as a whole. But
would drivers accept centrally-selected routes, espe-
cially if they thought the route benefited the network
but not them? Would they even bother to send in route
information?

A variety of methods could be used to address such questions. At the
simplest level are consumer surveys and focus groups. A more involved
approach is to organize multiperson driving simulations with the perfor-
mance of the network determined from individual driver decisions. Over
the course of many simulations, as drivers evaluate their own strategies,
stable configurations may emerge.

Performance models

A performance model describes or predicts how effectively an architecture
satisfies some function. Performance models are usually quantitative, and
the most interesting performance models are those of system-level functions;
that is, properties possessed by the system as a whole but by no subsystem.
Performance models describe properties like overall sensitivity, accuracy,
latency, adaptation time, weight, cost, reliability, and many others. Perfor-
mance requirements are often called “nonfunctional” requirements because
they do not define a functional thread of operation, at least not explicitly.
Cost, for example, is not a system behavior, but it is an important property
of the system. Detection sensitivity to a particular signal, however, does carry
with it implied functionality. Obviously, a signal cannot be detected unless
the processing is in place to produce a detection. It will also usually be
impossible to formulate a quantitative performance model without con-
straining the systems behavior and form.

Performance models come from the full range of engineering and man-
agement disciplines. But the internal structure of performance models gen-
erally falls into one of three categories:

1. Analytical: These models are the products of the engineering sciences.
A performance model in this category is a set of lower-level system
parameters and a mathematical rule of combination that predicts the
performance parameter of interest from lower-level values. The model
is normally accompanied by a “performance budget” or a set of nom-
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inal values for the lower-level parameters to meet a required perfor-
mance target.

2. Simulation: When the lower-level parameters can be identified, but
an easily computable performance prediction cannot, a simulation can
take the place of the mathematical rule of combination. In essence, a
simulation of a system is an analytical model of the system’s behavior
and performance in terms of the simulation parameters. The connec-
tion is just more complex and difficult to explicitly identify. A wide
variety of continuous, discrete time and discrete event simulators are
available, many with rich sets of constructs for particular domains.

3. Judgmental: Where analysis and simulation are inadequate or infea-
sible, human judgment may still yield reliable performance indicators.
In particular, human judgment, using explicit or implicit design heu-
ristics, can often rate one architecture as better than another, even
where a detailed analytical justification is impossible.

Formal methods
The software engineering community has taken a specialized approach to
performance modeling known as formal methods. Formal methods seek to
develop systems that provably produce formally defined functional and non-
functional properties. In formal development the team defines system behav-
ior as sets of allowed and disallowed sequences of operation, and may add
further constraints, such as timing, to those sequences. They then develop
the system in a manner that guarantees compliance to the behavioral and
performance definition. Roughly speaking, the formal methods approach is:

1. Identify the inputs and outputs of the system. Identify a set of math-
ematical and logical relations that must exist between the input and
output sequences when the system is operating as desired.

2. Decompose the system into components, identifying the inputs and
outputs of each component. Determine mathematical relations on
each component such that their composition is equivalent to the orig-
inal set of relations one level up.

3. Continue the process iteratively to the level of primitive implemen-
tation elements. In software this would be programming language
statements. In digital logic this might be low-level combinational or
sequential logic elements.

4. Compose the implementation backward, up the chain of inference
from primitive elements in a way that conserves the decomposed
correctness relations. The resulting implementation is then equivalent
to the original specification.

From the point of view of the architect, the most important applications
of formal methods are in the conceptual phases and in the certification of
high assurance and ultraquality systems. Formal methods require explicit
determination of allowed and disallowed input/output sequences. Trying
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to make that determination can be valuable in eliciting client information,
even if the resulting information is not captured in precise mathematical
terms. Formal methods also hold out the promise of being able to certify
system characteristics that can never be tested. No set of tests can certify
with certainty that certain event chains cannot occur, but theorems to that
effect are provable within a formal model.

Various formal and semiformal versions of the process are in limited use
in software and digital system engineering.11 While a fully formal version
of this process is apparently impractical for large systems at the present time
(and is definitely controversial), semiformal versions of the process have
been successfully applied to commercial products.

A fundamental problem with the formal methods approach is that the
system can never be more “correct” than the original specification. Because
the specification must be written in highly mathematical terms, it is partic-
ularly difficult to use in communication with the typical client. 

Data models

The next dimension of system complexity is retained data. What data does
the system retain and what relationships among the data does it develop
and maintain? Many large corporate and governmental information systems
have most of their complexity in their data and its internal relationships.
The most common data models have their origins in software development,
especially large database developments. Methods for modeling complex data
relationships were developed in response to the need to automate data-
intensive, paper-based systems. While data-intensive systems are most often
thought of as large, automated database systems, many working examples
are actually paper-based. Automating legacy paper-based systems requires
capturing the complex interrelationships among large amounts of retained
data.

Data models are of increasing importance because of the greater intelli-
gence being embedded in virtually all systems, and the continuing automa-
tion of legacy systems. In data-intensive systems, generating intelligent
behavior is primarily a matter of finding relationships and imposing persis-
tent structure on the records. This implies that the need to find structure and
relationships in large collections of data will be determinants of system
architecture.

Example: Manufacturing software systems are no
longer responsible just for control of work cells. They
are part of integrated enterprise information networks
in which real-time data from the manufacturing floor,
sales, customer operations, and other parts of the en-
terprise are stored and studied. Substantial competi-
tive advantages accrue to those who can make
intelligent judgments from these enormous data sets.
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Example: Intelligent transport systems are a complex
combination of distributed control systems, sensor net-
works, and data fusion. Early deployment stages will
emphasize only simple behavioral adaptation, as in
local intelligent light and on-ramp controllers. Full de-
ployment will fuse data sources across metropolitan
areas to generate intelligent prediction and control
strategies. These later stages will be driven by prob-
lems of extracting and using complex relationships in
very large databases.

The basis for modern data models are the Entity-Relationship diagrams
developed for relational databases. These diagrams have been generalized
into a family of object-oriented modeling techniques. An object is a set of
“attributes” or data elements and a set of “methods” or functions which act
upon the attributes (and possibly other data or objects as well). Objects are
instances of classes that can be thought of as templates for specific objects.
Objects and classes can have relationships of several types. Major relation-
ship types include aggregation (or composition); generalization, specializa-
tion, or inheritance; and association (which may be two-way or M-way).
Object-oriented modeling methods combine data and behavioral modeling
into a single hierarchy organized along and driven by data concerns. Behav-
ioral methods like those described earlier also include data definitions, but
the hierarchy is driven by functional decomposition.

One might think of object-oriented models as turning functional decom-
position models inside out. Functional decomposition models like data flow
diagramming describe the system as a hierarchy of functions, and hang a
data model onto the functional skeleton. The only data relationship sup-
ported is aggregation. An object-oriented model starts with a decomposition
of the data and hangs a functional model on it. It allows all types of data
relationships. Some problems decompose cleanly with functional methods
and only with difficulty in object-oriented methods, and some other prob-
lems are the opposite.

An example of a well-developed, object-oriented data modeling tech-
nique (OMT) is given in Chapter 10. Figure 10.7 shows a typical example of
the type of diagram used in that method, which combines conventional
entity relationship diagram and object-oriented abstraction. OMT has further
evolved into unified modeling language (UML), which is also discussed in
Chapter 10.

Data-oriented decompositions share the general heuristics of system
architecture. The behavioral and physical structuring characteristics have
direct analogs — composing or aggregation, decomposition, minimal com-
munications, etc. There are also similar problems of scale. Very large data
models must be highly structured with limited patterns of relationship (anal-
ogous to limited interfaces) to be implementable.
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Managerial models

To both the client and architect, a project may be as much a matter of planning
milestones, budgets, and schedules as it is a technical exercise. In sociotech-
nical systems, planning the system deployment may be more difficult than
assembling its hardware. The managerial or implementation view describes
the process of building the physical system. It also tracks construction events
as they occur.

Most of the models of this view are the familiar tools of project manage-
ment. In addition, management-related metrics that can be calculated from
other models are invaluable in efforts to create an integrated set of models.
Some examples include:

1. The waterfall and spiral system development meta-models; they are
the templates on which project-specific plans are built

2. PERT/CPM and related task and scheduling dependency charts
3. Cost and progress accounting methods
4. Predictive cost and schedule metrics calculable from physical and

behavioral models
5. Design or specification time quality metrics — defect counts, post-

simulation design changes, rate of design changes after each review.

The architect has two primary interests in managerial models. First, the
client usually cannot decide to go ahead with system construction without
solid cost and schedule estimates. Usually, producing such estimates requires
a significant effort in management models. Second, the architect may be
called upon to monitor the system as it is developed to ensure its conceptual
integrity. In this monitoring process managerial models will be very impor-
tant.

Examples of integrated models
As noted earlier, models which integrate multiple views are the special
concern of the architect. These integrating models provide the synthesized
view central to the architect’s concerns. An integrated modeling method is
a system of representation that links multiple views. The method consists of
a set of models for a subset of views, and a set of rules or additional models
to link the core views. Most integrated modeling methods apply to a partic-
ular domain. Table 8.2 lists some representative methods. These models are
described in greater detail, with examples, in Chapter 10. The references are
given there as well.

These methods use different models and cover different views. Their
components and dimensions are summarized in Table 8.3. 

©2000 CRC Press LLC



Summary
An architect’s work revolves around models. Since the architect does not
build the system directly, its integrity during construction must be main-
tained through models acting as surrogates. Models will represent and con-
trol the specification of the system, its design, and its production plan. Even
after the system is delivered, modeling will be the mechanism for assessing
system behavior and planning its evolution. Because the architect’s concerns
are broad, architecting models must encompass all views of the system. The
architect’s knowledge of models, like an individual’s knowledge of lan-
guage, will tend to channel the directions in which the system develops and
evolves.

Modeling for architects is driven by three key characteristics:

Table 8.2  Integrated Modeling Methods and Their Domains

Method Ref. Domain
Hatley/Pirbhai (H/P) Hatley, 1988 Computer-based reactive or event-driven 

systems
Quantitative quality 
function deployment 
(Q2FD)

Maier, 1995 Systems with extensive quantitative 
performance objectives and understood 
performance models

Object modeling 
technique (OMT)

Rumbaugh, 1991 Large-scale, data-intensive software 
systems, especially those implemented 
in modern object languages

ADARTS SPC, 1991 Large-scale, real-time software systems
Manufacturing system 
analysis (MSA)

Baudin, 1990 Intelligent manufacturing systems

Table 8.3  Comparison of Popular Modeling Methods

View H/P OMT ADARTS Q2FD MSA
Objectives Text Text Text Numbers Text

Behavior Data/control 
flow

Class 
diagrams, 
data flow, 
state charts

Data/event 
flow 

Links only Data flow

Performance Text (timing 
only)

Text Text Satisfaction 
models, 
QFD 
matrices

 Text, links to 
standard 
scheduling 
models

Data Dictionary Class/object 
diagrams

Dictionary N/A Entity-
relationship 
diagrams

Form Formalized 
block 
diagrams

Object 
diagrams

Task-object-
structure 
charts 
(multilevel)

Links by 
allocation

ASME process 
flow diagrams

Managerial N/A (link via 
metrics)

N/A N/A (link via 
metrics)

N/A Funds flow 
model, 
scheduling 
behavior
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1. Models are the principal language of the architect. Their foremost role
is to facilitate communication with client and builder. By facilitating
communication they carry out their other roles of maintaining design
integrity and assisting synthesis.

2. Architects require a multiplicity of views and models. The basic ones
are objective, form, behavior, performance, data, and management.
Architects need to be aware of the range of models that are used to
describe each of these views within their domain of expertise, and
the content of other views that may become important in the future.

3. Multidisciplinary, integrated modeling methods tie together the var-
ious views. They allow the design of a system to be refined in steps
from conceptually abstract to the precisely detailed necessary for
construction. 

The next chapter reconsiders the use of modeling in architecture by
placing modeling in a larger set of parallel progressions from abstract to
concrete. There, the field of view will expand to the whole architectural
design process and its parallel progressions in heuristics, modeling, evalu-
ation, and management.

Exercises

1. Choose a system familiar to you. Formulate a model of your system
in each of the views discussed in the chapter. How effectively does
each model capture the system in that view. How effectively do the
models define the system for the needs of initial concept definition
and communication with clients and builders? Are the models inte-
grated? That is, can you trace information across the models and
views?

2. Repeat Exercise 1, but with a system unfamiliar to you, and preferably
embodying different driving issues. Investigate models used for the
views most unfamiliar to you. In retrospect, does your system in
Exercise 1 contain substantial complexity in the views you are unfa-
miliar with?

3. Investigate one or more popular computer-aided system or software
engineering (CASE) tools. To what extent do they support each of the
views? To what extent do they allow integration across views?

4. A major distinction in behavioral modeling methods and tools is the
extent to which they support or demand executability in their models.
Executability demands a restricted syntax and up-front decision about
data and execution semantics. Do these restrictions and demands help
or hinder initial concept formulation and communication with build-
ers and clients? If the answer is variable with the system, is there a
way to combine the best aspects of both approaches?
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5. Models of form must be technology-specific because they represent
actual systems. Investigate modeling formalisms for domains not cov-
ered in the chapter. For example, telecommunication systems, busi-
ness information networks, space systems, integrated weapon sys-
tems, chemical processing systems, or financial systems.

Notes and references
1. Balzer, B. and Wile, D., Domain-Specific Software Architectures, Technical

Reports, Information Sciences Institute, University of Southern California.
2. Yourdon, E. and Constantine, L L., Structured Design: Fundamentals of a Disci-

pline of Computer Program and Systems Design, Yourdon Press, Englewood
Cliffs, NJ, 1979.

3. ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, Vols. 1-2, September,
1991. Available through the Software Productivity Consortium, Herndon, VA.

4. Rumbaugh, J. et. al., Object-Oriented Modeling and Design, Prentice-Hall, En-
glewood Cliffs, NJ, 1991.

5. Hatley, D. J. and Pirbhai, I., Strategies for Real-Time System Specification, Dorset
House, New York, 1988.

6. A comprehensive system modeling tool marketed by Ascent Logic, Inc.
7. A tool with both discrete event behavioral modeling and physical block dia-

grams marketed by i-Logix.
8. DeMarco, T., Structured Analysis and System Specification, Yourdon Press, En-

glewood Cliffs, NJ, 1979.
9. Functional Flow Diagrams, AFSCP 375-5 MIL-STD-499, USAF, DI-S-3604/S-

126-1, Form DD 1664, June 1968. Much more modern implementations exist,
for example, the RDD-100 modeling and simulation tool developed and mar-
keted by Ascent Logic Corp.

10. Morley, R. E., The chicken brain approach to agile manufacturing, Proc. Man-
ufacturing, Engineering, Design, Automation Workshop, Stanford, Palo Alto, p.
19, 1992.

11. Two references can be noted, for theory: Hoare, C. A. R., Communicating
Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985. For application
in software: Mills, H. D., Stepwise refinement and verification in box-struc-
tured systems, IEEE Computer, p. 23, June 1988.
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chapter nine

Design progression in 
system architecting

Introduction: architecting process components
Having outlined the products of architecting (models) in Chapter 8, this
chapter turns to its process. The goal is not a formal process definition.
Systems are too diverse to allow a fixed or dogmatic approach to architecting.
Instead of trying for a formal process definition, this chapter develops a set
of meta-process concepts for architecting activities and their relationships.
Architectural design processes are inherently eclectic and wide-ranging,
going abruptly from the intensely creative and individualistic to the more
prescribed and routine. While the processes may be eclectic, they can be
organized. Of the various organizing concepts, one of the most useful is
stepwise progression or “refinement.”

First, a brief review of the architecting process itself. The architect devel-
ops system models that span the range of system concerns, from objectives
to implementation. The architectural approach is, from beginning to end,
concerned with the feasibility as well as the desirability of the system imple-
mentation. It strives for fit, balance, and compromise between client prefer-
ences and builder capabilities. Compromise can only be assured by an inter-
play of activities, including both high-level structuring and such detailed
design as is critical to overall success.

This chapter presents a three-part approach to the process of system
architecting.

1. One approach is a conceptual model connecting the unstructured
processes of architecture to the rigorous engineering processes of the
specialty domains or disciplines. This model is based on stepwise
reduction of abstraction (or progression) in models, evaluation crite-
ria, heuristics, and purposes from initial architecting to formal sys-
tems engineering.
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2. There is an introduction to and review of the general concepts of
design, including theories of design, the elements of design, and the
processes of creating a design. These frame the activities that make
up the progressions.

3. There is a guide to the place of architecting and its methods with the
specialized design domains and the evolutionary development of
domain-specific methods. Architecting is recursive within a system
as it is defined in terms of its implementation domains. A split be-
tween architecting and engineering is an irreducible characteristic of
every domain, though the boundaries of that split cannot be clear
until the scientific basis for the methods in a domain are known.

The progressions of architecting are inextricably bound with the pro-
gressions of all system development. Architecting is not only iterative, it can
be recursive. As a system progresses, architecting may recur on subsystems.
The goal here is to understand the intellectual nature of its conduct, whether
it happens at a very high level or within a subsystem.

Design progression
Progressive refinement of design is one of the most basic patterns of engi-
neering practice. It permeates the process of architecting from models to
heuristics, information acquisition, and management. Its real power, espe-
cially in systems architecting, is that it provides a way to organize the
progressive transition from the ill-structured, chaotic, and heuristic processes
needed at the beginning to the rigorous engineering and certification pro-
cesses needed later. All can be envisioned as a stepwise reduction of abstrac-
tion from mental concept to delivered physical system.

In software the process is known as “stepwise refinement.” Stepwise
refinement is a specific strategy for top-down program development. The
same notion applies to architecting, but is applied to complex multidisci-
plinary system development. Stepwise refinement is the progressive removal
of abstraction in models, evaluation criteria, and goals. It is accompanied by
an increase in the specificity and volume of information recorded about the
system, and a flow of work from general to specialized design disciplines.
Within the design disciplines the pattern repeats as disciplinary objectives
and requirements are converted into the models of form of that discipline.
In practice, the process is neither so smooth nor continuous. It is better
characterized as episodic, with episodes of abstraction reduction alternating
with episodes of reflection and purpose expansion.

Stepwise refinement can be thought of as a meta-process model, much
as the waterfall and spiral. It is not an enactable process for a specific project,
but it is a model for building a project-specific process. Systems are too
diverse to follow a fixed process or dogmatic formula for architecting.
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Introduction by examples

Before treating the conceptually difficult process of general systems archi-
tecting, look to the roots. When a civil architect develops a building, does
he or she go directly from client words to construction drawings? Obviously
not. There are many intermediate steps. The first drawings are rough floor
plans showing the spatial relationships of rooms and sizes, or external ren-
derings showing the style and feel of the building. Following these are
intermediate drawings giving specific dimensions and layouts. Eventually
come the construction drawings with full details for the builder. The archi-
tect’s role does not have a universally applicable stopping point, but the
most common case is based on the needs of the client. When the designs are
sufficiently refined (in enough views) for the client to make a decision to
proceed with construction, the architect’s conceptual development job is
complete. The architect may be busy with the project for some time to come
in shepherding the conceptual design through detailed design, overseeing
construction, and advising the client on certification; but the initial concept
role is complete when the client can make the construction decision.

In a different domain, the beginning computer programmer is taught a
similar practice. Stepwise refinement in programming means to write the
central controlling routine first. Anywhere high complexity occurs, ignore it
by giving it a descriptive name and making it a subroutine or function. Each
subroutine or function is “stubbed,” that is, given a dummy body as a
placeholder. When the controlling routine is complete, it is compiled and
executed as a test. Of course, it doesn’t do anything useful since its subrou-
tines are stubbed. The process is repeated recursively on each subroutine
until routines can be easily coded in primitive statements in the program-
ming language. At each intermediate step an abstracted version of the whole
program exists that has the final program’s structure but lacks internal
details.

Both examples show progression of system representation or modeling.
Progression also occurs along other dimensions. For example, both the civil
architect and the programmer may create distinct alternative designs in their
early stages. How are these partial designs evaluated to choose the superior
approach? In the earliest stages both the programmer and the civil architect
use heuristic reasoning. The civil architect can measure rough size (to esti-
mate cost), judge the client’s reaction, and ask the aesthetic opinion of others.
The programmer can judge code size, heuristically evaluate the coupling
and cohesion of the resulting subroutines and modules, review applicable
patterns from catalogs, and review functionality with the client. As their
work progresses, both will be able to make increasing use of rational and
quantitative evaluation criteria. The civil architect will have enough details
for proven cost models, and the programmer can measure execution speed,
compiled size, behavioral compliance, and invoke quantitative software
quality metrics.
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Design as the evolution of models

All architects, indeed all designers, manipulate models of the system. These
models become successively less abstract as design progresses. The inte-
grated models discussed in Chapter 10 exhibit stepwise reduction of abstrac-
tion in representation and in their design heuristics.

In Hatley/Pirbhai the reduction of abstraction is from behavioral model
to technology-specific behavioral model to architecture model. There is also
hierarchical decomposition within each component. The technology of mod-
ules is indeterminate at the top level, and becomes technology-specific as
the hierarchy develops. The Q2FD performance modeling technique shows
stepwise refinement of customer objectives into engineering parameters. As
the QFD chain continues, the engineering parameters get closer to imple-
mentation until, ultimately, they may represent machine settings on the
factory floor. Likewise, the structure of integrated models in software and
manufacturing systems follows the same logic or progression.

Evaluation criteria and heuristic refinement

The criteria for evaluating a design progresses or evolves in the same manner
as design models. In evaluation, the desirable progression is from general
to system-specific to quantitative. For heuristics, the desirable progression
is from descriptive and prescriptive qualitatives to domain-specific quanti-
tatives and rational metrics. This progression is best illustrated by following
the progression of a widely recognized heuristic into quantitative metrics
within a particular discipline. Start with the partitioning heuristic:

In partitioning, choose the elements so that they are
as independent as possible, that is, elements with
low external complexity and high internal complex-
ity. 

This heuristic is largely independent of domain. It serves as an evalua-
tion criterion and partitioning guide whether the system is digital hardware,
software, human-driven, or otherwise. But, the guidance is nonspecific; nei-
ther independence nor complexity is defined. By moving to a more restricted
domain, computer-based systems in this example, this heuristic refines into
more prescriptive and specific guidelines. The literature on structured design
for software (or, more generally, computer-based systems) includes several
heuristics directly related to the partitioning heuristic.1 The structure of the
progression is illustrated in Figure 9.1.

1. Module fan-in should be maximized. Module fan-out should gener-
ally not exceed 7 ± 2.

2. The coupling between modules should be — in order of preference
— data, data structure, control, common, and content.
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3. The cohesion of the functions allocated to a particular module should
be — in order of preference — functional/control, sequential, com-
municational, temporal, periodic, procedural, logical, and coinciden-
tal.

These heuristics give complexity and independence more specific form.
As the domain restricts even farther, the next step is to refine into quantitative
design quality metrics. This level of refinement requires a specific domain
and detailed research, and is the concern of specialists in each domain. But,
to finish the example, the heuristic can be formulated into a quantitative
software complexity metric. A very simple example is:

Compute a complexity score by summing: one point
for each line of code, 2 points for each decision point,
5 points for each external routine call, 2 points for

Figure 9.1 Software refinement of coupling and cohesion heuristic. The general
heuristic is refined into a domain-specific set of heuristics.
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each write to a module variable, 10 points for each
write to a global variable.*

Early evaluation criteria or heuristics must be as unbounded as the
system choices. As the system becomes constrained, so do the evaluation
criteria. What was a general heuristic judgment becomes a domain-specific
guideline, and, finally, a quantitative design metric.

Progression of emphasis

On a more abstract level, the social or political meaning of a system to its
developers also progresses. A system goes from being a product (something
new) to a source of profit or something of value to a policy (something of
permanence). In the earliest stages of a system’s life it is most likely viewed
as a product. It is something new, an engineering challenge. As it becomes
established and its development program progresses, it becomes an object
of value to the organization. Once the system exists it acquires an assumption
of permanence. The system, its capabilities, and its actions become part of
the organization’s nature. To have and operate the system becomes a policy
that defines the organization.

With commercial systems the progression is from product innovation to
business profit to corporate process.2 Groups innovate something new, suc-
cessful systems become businesses, and established corporations perpetuate
a supersystem that encompasses the system, its ongoing development, and
its support. Public systems follow a similar progression. At their inception
they are new, at their development they acquire a constituency, and they
eventually become a bureaucratic producer of a commodity.

Concurrent progressions

Other concurrent progressions include risk management, cost estimating,
and perceptions of success. Risk management progresses in specificity and
goals. Early risk management is primarily heuristic with a mix of rational
methods. As prototypes are developed and experiments conducted, risk
management mixes with interpretation. Solid information begins to replace
engineering estimates. After system construction, risk management shifts to
postincident diagnostics. System failures must be diagnosed, a process that
should end in rational analysis but may have to be guided by heuristic
reasoning.

Cost estimating goes through an evolution similar to other evaluation
criteria. Unlike other evaluation criteria, cost is a continually evolving char-
acteristic from the systems inception. At the very beginning the need for an
estimate is highest and the information available is lowest. Little information

* Much more sophisticated complexity metrics have been published in the software engineering
literature. One of the most popular is the McCabe metric, for which there is a large automated
toolset.
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is available because the design is incomplete and no uncertainties have been
resolved. As development proceeds, more information is available, both
because the design and plans become more complete and because actual
costs are incurred. Incurred costs are no longer estimates. When all costs are
in (if such an event can actually be identified) there is no longer a need for
an estimate. Cost estimating goes through a progression of declining need
but of continuously increasing information.

All of the “ilities” are part of their own parallel progressions. These
system characteristics are known precisely only when the system is
deployed. Reliability, for example, is known exactly when measured in the
field. During development, reliability must be estimated from models of the
system. Early in the process the customer’s desires for reliability may be
well known, but the reliability performance is quite uncertain. As the design
progresses to lower levels, the information needed to refine reliability esti-
mates become known, information like parts counts, temperatures, and
redundancy.

Perceptions of success evolve from architect to client and back to archi-
tect. The architect’s initial perception is based on system objectives deter-
mined through client interaction. The basic measure of success for the archi-
tect becomes successful certification. But once the system is delivered, the
client will perceive success on his or her own terms. The project may produce
a system that is successfully certified but that nonetheless becomes a disap-
pointment. Success is affected by all other conditions affecting the client at
delivery and operation, whether or not anticipated during design.

Episodic nature

The emphasis on progression appears to define a monotonic process. Archi-
tecting begins in judgment, rough models, and heuristics. The heuristics are
refined along with the models as the system becomes bounded until rational,
disciplinary engineering is reached. In practice, the process is more cyclic or
episodic, with alternating periods of synthesis, rational analysis, and heu-
ristic problem solving. These episodes occur during system architecting, and
may appear again in later, domain-specific stages.

The occurrence of the episodes is integral to the architect’s process. An
architect’s design role is not restricted solely to “high-level” considerations.
Architects dig down into specific subsystem and domain details where nec-
essary to establish feasibility and determine client-significant performance
(see Chapter 1, Figure 1.1, and the associated discussion). The overall process
is one of high-level structuring and synthesis (based on heuristic insight)
followed by rational analysis of selected details. Facts learned from those
analyses may cause reconsideration of high-level synthesis decisions and
spark another episode of synthesis and analysis. Eventually, there should be
convergence to an architectural configuration, and the driving role passes to
subsystem engineers.
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Design concepts for systems architecture
While systems design is an inherently complicated and irregular practice, it
has well-established and identifiable characteristics and can be organized
into a logical process. As discussed in the Preface, the activities of architecting
can be distinguished from other engineering activities, even if not crisply.
Architecting is characterized by the following:

1. Architecting is, predominantly, an eclectic mix of rational and heuris-
tic engineering. Other elements, such as normative rules and group
processes, enter in lesser roles.

2. Architecting revolves around models, but is composed of the basic
processes of scoping, aggregation, partitioning, integration, and cer-
tification. Few complete rational methods exist for these processes,
and the principal guidelines are heuristic.

3. Uncertainty is inherent in complex system design. Heuristics are spe-
cialized tools to reduce or control, but not eliminate, uncertainty.

4. Continuous progression on many fronts is an organizing principle of
architecting, architecture models, and supporting activities.

Civil engineering and architecture are perhaps the most mature of all
engineering disciplines. Mankind has more experience with engineering civil
structures than any other field. If any area could have the knowledge nec-
essary to make it a fully rational and scientific endeavor it should be civil
engineering. But it is in civil practice that the distinction between architecture
and engineering is best established. Both architects and engineers have their
roles, often codified in law, and their professional training programs empha-
size different skills. Architects deal particularly with those problems that
cannot be entirely rationalized by scientific inquiry. The architect’s approach
does not ignore science; it combines it with art. Civil engineers must likewise
deal with unrationalizable problems, but the focus of their concerns is with
well-understood, rational design and specification problems. By analogy, this
suggests that all design domains contain an irreducible kernel of problems
that are best addressed through creative and heuristic approaches that com-
bine art and science. This kernel of problems, it might be called the archi-
tectonic kernel, is resistant to being subsumed into engineering science
because it inherently binds together social processes (client interaction) with
engineering and science. The social side is how we determine and under-
stand people’s needs. The engineering and science side is determining the
feasibility of a system concept. The bridge is the creative process of imagining
system concepts in response to expressions of client need.

Historical approaches to architecting

As indicated in the introduction to Part One, civil architects recognize four
basic theories of design: the normative or pronouncement, the rational, the
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argumentative or participative, and the heuristic. While all have their roots
in the civil architecture practice, they are recognizable in modern complex
systems as well. They have been discussed before, in particular in Rechtin,
1991,3 and in the Introduction to Part One. The purpose in returning to them
here is to indicate their relationship to progressive modeling and to bring in
their relevance to software-oriented development.* To review, normative
theory is built from pronouncements (statements of what should be, a set of
hard rules), most often given as restrictions on the content of particular views
(usually form). A pronouncement demands that a particular type of form be
used, essentially unchanged, throughout. Alternatively, one may pronounce
the reverse and demand that certain types of form not be used. In either case,
success is defined by accurate implementation of the normative pronounce-
ments, not by measures of fitness.

Rational system design is tightly integrated with modeling since it seeks
to derive optimal solutions, and optimality can only be defined within a
structured and mathematical framework. To be effective, rational methods
require modeling methods which are broad enough to capture all evaluation
aspects of a problem, deep enough to capture the characteristics of possible
solutions, and mathematically tractable enough to be solved for problems
of useful size. Given these, rational methods “mechanically” synthesize a
design from a series of modeled problem statements in progressively more
detailed subsystems.

Consensual or participative system design uses models primarily as a
means of communicating alternative designs for discussion and negotiation
among participants. From the standpoint of modeling, consensuality is one
of several techniques for obtaining understanding and approval of stake-
holders, rather than of itself a structured process of design.

General heuristics are guides to — and are sometimes obtained from —
models, but they are not models themselves. Heuristics are employed at all
levels of design, from the most general to domain-specific. Heuristics are
needed whenever the complexity of the problem, solutions, and issues over-
whelms attempts at rational modeling. This occurs as often in software or
digital logic design as in general system design. Within a specific domain
the heuristic approach can be increasingly formalized, generating increas-
ingly prescriptive guidance. This formalization is a reflection of the progres-
sion of all aspects of design — form, evaluation, and emphasis — from
abstract to concrete.

The power of the Chapter 2 heuristics comes by cataloging heuristics
which apply in many domains, giving them generality in those domains,
likely extensibility in others, and a system-level credibility. Applied consis-
tently through the several levels of system architecture, they help insure
system integrity. For example, “quality cannot be tested in, it must be
designed in” is equally applicable from the top-level architectural sketch to

* Stepwise refinement is a term borrowed from software that describes program development
by sequential construction of programs, each complete unto itself, but containing increasing
fractions of the total desired system functionality.
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the smallest detail. However, the general heuristic relies on an experienced
system-level architect to select the ones appropriate for the system at hand,
interpret their application-specific meaning, and to promulgate them
throughout its implementation. A catalog of general heuristics is of much
less use to the novice; indeed, an uninformed selection among them could
be dangerous. For example, “if it ain’t broke, don’t fix it,” questionable at
best, can mislead one from making the small incremental changes that often
characterize successful continuous improvement programs, and can block
one from recognizing the qualitative factors, like ultraquality, that redefine
the product line completely.

Specialized and formalized heuristics

While there are many very useful general heuristics, there really is not a
general heuristic method as such.* Heuristics most often are formalized as
part of more formalized methods within specific domains. A formalized
heuristic method gives up generality for more direct guidance in its domain.
Popular design methods often contain formalized heuristics as guidelines
for design synthesis. A good example is the ADARTS** software engineering
methodology. ADARTS provides an extensive set of heuristics to transform
a data-flow-oriented behavioral model into a multitasking, modular software
implementation. Some examples of formalized ADARTS prescriptive heu-
ristics include:

Map a process to an active I/O process if that trans-
formation interfaces to an active I/O device4

Group processes that read or update the same data
store or data from the same I/O device into a single
process5

As the ADARTS method makes clear, these are recommended guidelines
and not the success-defining pronouncements of the normative approach.
These heuristics do not produce an optimal, certifiable, or even unique result,
much less success-by-definition. There is ambiguity in their application.
Different heuristics may produce conflicting software structuring. The soft-
ware engineer must select from the heuristics list and interpret the design
consequences of a given heuristic with awareness of the specific demands
of the problem and its implementation environment.

Conceptually, general and domain-specific, formalized heuristics might
be arranged in a hierarchy. In this hierarchy, domain-specific heuristics are
specializations of general heuristics, and the general are abstractions of the

* On the other hand, knowledge of a codified set of heuristics can lead to new ways of thinking
about problems. This could be described as heuristic thinking or qualitative reasoning.
** This method is described in the ADARTS Guidebook, SPC-94040-CMC, Version 2.00.13, Volume
1, September 1991, available from the Software Productivity Consortium, Herndon, VA.
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specific. Architecting in general and architecting in specific domains may be
linked through the progressive refinement and specialization of heuristics.
To date, this hierarchy can be clearly identified only for a limited set of
heuristics. In any case, the pattern of refining from abstract to specific is a
broadly persistent pattern, and it is essential for understanding life cycle
design progression.

Scoping, aggregation, partitioning, and certification

A development can be envisioned as the creation and transformation of a
series of models. For example, to develop the systems requirements is to
develop a model of what the system should do and how effectively it should
do it. To develop a system design is to develop a model of what the system
is. In a pure waterfall development there is rough alignment between water-
fall steps and the views defined in Chapter 8. Requirements development
develops models for objectives and performance, functional analysis devel-
ops models of behavior, and so on down the waterfall chain. Architects
develop models for all views, though not at equal levels of detail. In uncritical
views or uncritical portions of the system the models will be rough. In some
areas the models may need to be quite detailed from the beginning.

Models are best understood by view because the views reflect their
content. While architecting is consistent with waterfall or spiral develop-
ment, it does not traverse the steps in the conventional manner. Architects
make use of all views and traverse all development steps, but at varying
levels of detail and completeness. Because architects tend to follow complex
paths through design activities, some alternative characterization of design
activities independent of view is useful. The principal activities of the archi-
tect are scoping, partitioning, aggregation, and certification. Figure 9.2 lists
typical activities in each category and suggests some relationships.

Scoping
Scoping procedures are methods for selecting and rejecting problem state-
ments, for defining constraints, and for deciding on what is “inside” or
“outside” the system. Scoping implies the ability to rank alternative state-
ments and priorities on the basis of overall desirability or feasibility. Scoping
should not design system internals, though some choices may implicitly do
so for lack of design alternatives. Desirably, scoping limits what needs to be
considered and why.

Scoping might alternatively be referred to as purpose analysis. Purpose
analysis is an inquiry into why someone wants the system. Purpose precedes
requirements. Requirements are determined by understanding how having
a system is valuable to the client, and what combination of fulfilled purposes
and systems costs represents a satisfactory and feasible solution.*

* Dr. Kevin Kreitman has pointed out the extensive literature in soft systems theory that applies
to purpose analysis.
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Scoping is the heart of front-end architecture. A well-scoped system is
one that is both desirable and feasible, the essential definition of success in
system architecting. As the project begins, the scope forms, at least implicitly.
All participants will form mental models of the system and its characteristics;
in doing so, the system's scope is being defined. If incompatible models
appear, scoping has failed through inconsistency. Heuristics suggest that
scoping is among the most important of all system design activities. One of
the most popular heuristics in the previous book has been: all the really
important mistakes are made the first day. Its popularity certainly suggests
that badly chosen system scope is a common source of system disasters.

Of course, it is as impossible to prevent mistakes on the first day as it
is on any other day. What the heuristic indicates is that mistakes of initial
conception will have the worst long-term impact on the project. Therefore,
one must be particularly careful that a mistake of scope is discovered and
corrected as soon as possible.* One way of doing this is to defer absolute
decisions on scope by retaining expansive and restrictive options as long as
possible, a course of action recommended by other heuristics (the options
heuristics of Appendix A).

In principle, scope can be determined rationally through decision theory.
Decision theory applies to any selection problem. In this case the things
being selected are problem statements, constraints, and system contexts. In
practice, the limits of decision theory apply especially strongly to scoping
decisions. These limits, discussed in greater detail in a subsequent section,

Figure 9.2 Typical activities within scoping, aggregation, partitioning, and certifi-
cation.

* A formalized heuristic with a similar idea comes from software engineering. It says: the cost
of removing a defect rises exponentially with the time (in project phases) between its insertion
and discovery. Hence, mistakes of scope (the very earliest) are potentially dominant in defect
costs.
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include the problems of utility for multiple system stakeholders, problem
scale, and uncertainty. The judgments of experienced architects, at least as
expressed through heuristics (see Appendix A for a detailed list), is that the
most useful techniques to establish system scope are qualitative.

Scoping heuristics and decision theory share an emphasis on careful
consideration of who will use the system and who will judge success. Deci-
sion theory requires a utility function, a mathematical representation of
system value as a function of its attributes. A utility function can be deter-
mined only by knowing whose judgments of system value will have priority
and what the evaluation criteria are. Compare the precision of the utility
method to related heuristics:

Success is defined by the beholder, not by the archi-
tect.

The most important single element of success is to
listen closely to what the customer perceives as his
requirements and to have the will and ability to be
responsive (Steiner, J. E., 1978).

Ask early about how you will evaluate the success
of your efforts (Hayes-Roth et al., 1983).

Scoping heuristics suggest approaches to setting scope that are outside
the usual compromise procedures of focused engineering. One way to
resolve intractable problems of scope is to expand. The heuristic is:

Moving to a larger purpose widens the range of so-
lutions (Nadler, G., 1990).

The goal of scoping is to form a concept of what the system will do, how
effectively it will do it, and how it will interact with the outside world. The
level of detail required is the level required to gain customer acceptance,
first of continued development and ultimately of the built system. Thus the
scope of the architect’s activities are governed not by the ultimate needs of
system development, but by the requirements of the architect's further role.
The natural conclusion to scoping is certification, where the architect deter-
mines that the system is fit for use. Put another way, the certification is that
the system is appropriate for its scope.

Scoping is not solely a requirements-related activity. For scope to be
successfully determined, the resulting system must be both satisfactory and
feasible. The feasibility part requires some development of the system
design. The primary activities in design by architects are aggregation and
partitioning, the basic structuring of the system into components.
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Aggregation and partitioning
Aggregation and partitioning are the grouping and separation of related
solutions and problems. They are two sides of the same coin. Both are the
processes by which the system is defined as components. While one can
argue about which precedes the other, they are, in fact, used so iteratively
and repeatedly that neither can be usefully said to precede the other. Con-
ventionally, the components are arranged into hierarchies with a modest
number of components at each level of the hierarchy (the famous 7 ± 2
structuring heuristic). The most important aggregation and partitioning heu-
ristics are to minimize external coupling and maximize internal cohesion,
usually worded as6:

In partitioning, choose the elements so that they are
as independent as possible, that is, elements with
low external complexity and high internal cohesion.

Group elements that are strongly related each other,
separate elements that are unrelated.

These two heuristics are especially interesting because they are part of
the clearest hierarchy in heuristic refinement. Design is usefully viewed as
progressive or stepwise refinement. Models, evaluation criteria, heuristics,
and other factors are all refined as design progresses from abstract to concrete
and specific. Ideally, heuristics exist in hierarchies that connect general
design guidance, such as the two preceding heuristics, to domain-specific
design guidelines. The downward direction of refinement is the deduction
of domain-specific guidelines from general heuristics. The upward abstrac-
tion is the induction of general heuristics from similar guidelines across
domains.

The deductive direction asks, taking the coupling heuristic as an exam-
ple, how can coupling be measured? Or, for the cohesion heuristic, given
alternative designs, which is the most cohesive? Within a specific domain
the questions should have more specific answers. For example, within the
software domain these questions are answered with greater refinement,
though still heuristically. Studies have demonstrated quantitative impact on
system properties as the two heuristics are more and less embodied in a
systems design. A generally accepted software measure of partitioning is
based on interface characterization and has five ranked levels. A related
metric for aggregation quality (or cohesion) has seven ranked levels of cohe-
sion.* Studies of large software systems show a strong correlation between
coupling and cohesion levels, defect rates, and maintenance costs. A major
study7 found that routines with the worst coupling-to-cohesion ratios (inter-

* The cohesion and coupling levels are carefully discussed in Yourdon, E. and Constantine, L.
L., Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design,
Yourdon Press, Englewood Cliffs, 1979. They were introduced earlier by the same authors and
others in several papers. 
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face complexity to internal coherence) had 7 times more errors and 20 times
higher maintenance costs than the routines with the best ratios.

Aggregation and partitioning with controlled fan-out and limited com-
munication is a tested approach to building systems in comprehensible hier-
archies. Numerous studies in specific domains have shown that choosing
loosely coupled and highly cohesive elements leads to systems with low
maintenance cost and low defect rates. However, nature suggests that much
flatter hierarchies can yield systems of equal or greater robustness in certain
circumstances.

Chapter 8 introduced an ant colony as an example of a flat hierarchy
system that exhibits complex and adaptive behavior. The components of an
ant colony, a few classes of ants, interact in a very flat system hierarchy.
Communication is loose and hierarchically unstructured. There is no intel-
ligent central direction. Nevertheless, the colony as a whole produces com-
plex system-level behavior. The patterns of local, nonhierarchical interaction
produce very complex operations. The colony is also very robust in that large
numbers of its components (except the queen) can be removed catastrophi-
cally and the system will smoothly adapt. A related technological example,
perhaps, is the Internet. Again, the system as a whole has a relatively flat
hierarchy and no strong central direction; however, the patterns of local
communication and resulting collaboration are able to produce complex,
stable, and robust system-level behavior.

The observations that controlled and limited fan-out and interaction (the
7 ± 2 heuristic and coupling and cohesion studies) and that extreme fan-out
and high distributed communication and control (ant colonies and the Inter-
net) can both lead to high-quality systems is not contradictory. Rather, they
are complementary observations of the refinement of aggregation and par-
titioning into specific domains. In both cases a happy choice of aggregations
and partitions yield good systems. But the specific indicators of what con-
stitutes good aggregation and partitioning vary with the domain. The gen-
eral heuristic stands for all, but prescriptive or formalized guidance must be
adapted for the domain.

Certification
To certify a system is to give an assurance to the paying client that the system
is fit for use. Certifications can be elaborate, formal, and very complex, or
the opposite. The complexity and thoroughness are dependent on the sys-
tem. A house can be certified by visual inspection. A computer flight control
system might require highly detailed testing, extensive product and process
inspections, and even formal mathematical proofs of design elements. Cer-
tification presents two distinct problems. The first is determining that the
functionality desired by the client and created by the builder is acceptable.
The second is the assessment of defects revealed during testing and inspec-
tion, and the evaluation of those failures with respect to client demands.

Whether or not a system possesses a desired property can be stated as
a mathematically precise proposition. Formal methods develop and track
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and verify such propositions throughout development, ideally leading to a
formal proof that the system as designed possesses the desired properties.
However, architecting practice has been to treat such questions heuristically,
relying on judgment and experience to formulate tests and acceptance pro-
cedures. The heuristics on certification criteria do not address what such
criteria should be, but the process for developing the criteria. Essentially,
certification should not be treated separately from scoping or design. Certi-
fiability must be inherent in the design. Two summarizing heuristics, actually
on scoping and planning, are:

For a system to meet its acceptance criteria to the
satisfaction of all parties, it must be architected, de-
signed, and built to do so — no more and no less.

Define how an acceptance criterion is to be certified
at the same time the criterion is established.

The first part of certification is intimately connected to the conceptual
phase. The system can be certified as possessing desired criteria only to the
extent it is designed to support such certification. The second element of
certification, dealing with failure, carries its own heuristics. These heuristics
emphasize a highly organized and rigorous approach to defect analysis and
removal. Once a defect is discovered it should not be considered resolved
until it has been traced to its original source, corrected, the correction tested
at least as thoroughly as was needed to find the defect originally, and the
process recorded. Deming’s famous heuristic summarizes:

Tally the defects, analyze them, trace them to the
source, make corrections, keep a record of what hap-
pens afterwards, and keep repeating it.

A complex problem in ultraquality systems is the need to certify levels
of performance that cannot be directly observed. Suppose a missile system
is required to have a 99% success rate with 95% confidence. Suppose further
that only 50 missiles are fired in acceptance tests (perhaps because of cost
constraints). Even if no failures are experienced during testing, the require-
ment cannot be quantitatively certified. Even worse, suppose a few failures
occurred early in the 50 tests but were followed by flawless performance
after repair of some design defects. How can the architect certify the system?
It is quite possible that the system meets the requirement, but it cannot be
proven.

Certification of ultraquality might be deemed a problem of requirements.
Many would argue that no requirement should be levied that cannot be
quantitatively shown. But the problem will not go away. The only acceptable
failure levels in one-of-a-kind systems and those with large public safety
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impacts will be immeasurable. No such systems can be certified if certifica-
tion in the absence of quantitatively provable data is not possible.

Some heuristics address this problem. The Deming approach, given as
a heuristic above, seeks to achieve any quality level by continuous incre-
mental improvement. Interestingly, there is a somewhat contradictory heu-
ristic in the software domain. When a software system is tested, the number
of defects discovered should level off as testing continues. The amount of
additional test time to find each additional defect should increase, and the
total number of discovered defects will level out. The leveling out of the
number of defects discovered gives an illusion that the system is now defect
free. In practice, testing or reviews at any level rarely consistently find more
than 60% of the defects present in a system. But if testing at a given level
finds only a fixed percentage of defects, it likewise leaves a fixed percentage
undiscovered. The size of that undiscovered set will be roughly proportional
to the number found in that same level of test or review. The heuristic can
be given in two forms:

The number of defects remaining in a system after a
given level of test or review (design review, unit test,
system test, etc.) is proportional to the number found
during that test or review

Testing can indicate the absence of defects in a sys-
tem only when: (1) the test intensity is known from
other systems to find a high percentage of defects,
and (2) few or no defects are discovered in the system
under test.

So the discovery and removal of defects is not necessarily an indication
of a high-quality system. A variation of the “zero-defects” philosophy is that
ultraquality requires ultraquality throughout all development processes.
That is, certify a lack of defects in the final product by insisting on a lack of
defects anywhere in the development process. The ultraquality problem is
a particular example of the interplay of uncertainty, heuristics, and rational
methods in making architectural choices. That interplay needs to be exam-
ined directly to understand how heuristic and rational methods interact in
the progression of system design.

Certainty, rationality, and choice

All of the design processes — scoping, partitioning, aggregation, and certi-
fication — require decisions. They require decisions on which problem state-
ment to accept, what components to organize the system into, or when the
system has reached an acceptable level of development. A by-product of a
heuristic-based approach is continuous uncertainty. Looking back on their
projects, most architects interviewed for the USC program concluded that
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the key choices they made were rarely obvious decisions at the time.
Although, in retrospect, it may be obvious that a decision was either a very
good or a very bad one, at the time the decision was actually made it was
not clear at all. The heuristic summarizing is before the flight it was opinion,
after the flight it was obvious. The members of the teams were constantly
arguing and decision was reached only through the authority of the leading
architect for the project.*

A very considerable effort has been made to develop rational decision-
making methods. The goal of a fully rational or scientific approach is to make
decisions optimally with respect to rigorously determined criteria. Again,
the model of architecting practice presented here is a pragmatic mixture of
heuristic and rigor. Decision theory works well when the problem can be
parameterized with a modest number of values, uncertainty is limited and
estimates are reliable, and the client or users possess consistent utility func-
tions with tractable mathematical expression. The absence of any of these
conditions weakens or precludes the approach. Unfortunately, some or all
of the conditions are usually absent in architecting problems (and even in
more restricted disciplinary design problems). To understand why, one must
understand the elements of the decision theoretic approach. The decision
theoretic framework is:

1. Identify the attributes contributing to client satisfaction and an algo-
rithm for estimating the value of sets of attributes. More formally, this
is determining the set over which the client will express preference.

2. Determine a utility function, a function that combines all the attributes
and represents overall client satisfaction. Weighted, additive utility
functions are commonly used, but not required. The utility function
converts preferences into a mathematically useful objective function.

3. Include uncertainty by determining probabilities, calculating the util-
ity probability distribution, and determining the client’s risk aversion
curve. The risk aversion curve is a utility theory quantity that mea-
sures the client’s willingness to trade risk for return.

4. Select the decision with the highest-weighted expected utility.

The first problem in applying this framework to architecting problems
is scale. To choose an optimum, the decision theory user must be able to
maximize the utility functions over the decision set. If the set is very large,
the problem is computationally unfeasible. If the relationship between the
parameters and utility is nonlinear, only relatively small problems are solv-
able. Unfortunately, both conditions commonly apply to the architecting and
creation of complex systems.

The second problem is to workably and rationally include the effects of
uncertainty or risk. In principle, uncertainty and unreliability in estimates
can be folded into the decision theoretic framework through probability and

* Comments by Harry Hillaker at USC on his experience as YF-16 architect.
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assessment of the client’s risk aversion curve. The risk aversion curve mea-
sures the client’s willingness to trade risk and return. A risk-neutral client
wants the strategy that maximizes expected return. A risk-averse client pre-
fers a strategy with certainty over opportunity for greater return. A risk-
disposed client prefers the opposite, wanting the opportunity for greater
return even if the expectation of the return is less.

In practice, however, the process of including uncertainty is heavily
subjective. For example, how can one estimate probabilities for unprece-
dented events? If the probabilities are inaccurate, the whole framework loses
its claim to optimality. Estimation of risk aversion curves is likewise subjec-
tive, at least in practice. When so much subjective judgment has been intro-
duced, it is unclear if maintaining the analytical framework leads to much
benefit or if it is simply a gloss.

One clear benefit of the decision theory framework is that it makes the
decision criteria explicit and, thus, subject to direct criticism and discussion.
This beneficial explicitness can be obtained without the full framework. This
approach is to drop the analytic gloss, make decisions based on heuristics
and architectural judgment, but (and this is more honored in the breach)
require the basis be explicitly given and recorded.

A third problem with attempting to fully rationalize architectural deci-
sions is that for many of them there will be multiple clients who have some
claim to express a preference. Single clients can be assumed to have consis-
tent preferences and, hence, consistent utility functions. However, consistent
utility functions do not generally exist when the client or user is a group as
in sociotechnical systems.* Even with single clients, value judgments may
change, especially after the system is delivered and the client acquires direct
experience.**

Rational and analytical methods produce a gloss of certainty, but often
hide highly subjective choices. No hard-and-fast guideline exists for choos-
ing between analytical choice and heuristic choice when unquantified uncer-
tainties exist. Certainly, when the situation is well understood and uncer-
tainties can be statistically measured, the decision theoretic framework is
appropriate. When even the right questions are in doubt it adds little to the
process to quantify them. Intermediate conditions call for intermediate cri-
teria and methods. For example, a system might have as client objectives
“be flexible” and “leave in options.” Obviously, these criteria are open to
interpretation. The refinement approach is to derive or specialize increas-
ingly specific criteria from very general criteria. This process creates a con-

* This problem with multiple clients and decision theory has been extensively studied in
literature on public choice and political philosophy. A tutorial reference is Mueller, D. C., Public
Choice, Cambridge University Press, 1979.
** Non-utility theory based decision methods, such as the Analytic Hierarchy Process, have many
of the same problems. Most writers have discussed that the primary role of decision theoretic
methods should be to elucidate the underlying preferences. See Saaty, T., The Analytic Network
Process, RWS Publications, 1996, Preface and Chapter 1.
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tinuous progression of evaluation criteria from general to specific, and even-
tually measurable.

Example: The U.S. Department of Transportation has
financed an Intelligent Transport System (ITS) archi-
tecture development effort. Among their evaluation
criteria was “system flexibility,” obviously a very loose
criterion.8 An initial refinement of the loose criterion
could be:

1. Architecture components should fit in many alter-
native architectures.

2. Architecture components should support multiple
services.

3. Architecture components should expand with linear
or sublinear cost to address greater load.

4. Components should support non-ITS services.

These refined heuristic evaluation criteria can be applied directly to
candidate architectures, or they can be further refined into quantitative and
measurable criteria. The intermediate refinement on the way to quantitative
and measurable criteria creates a progression that threads through the whole
development process. Instead of thinking of design as beginning and stop-
ping, it continuously progresses. Sophisticated mixtures of the heuristics and
rational methods are part of architecting practice in some domains. This
progression is the topic of the next section.

Stopping or progressing?

When does architecting and modeling stop? The short answer is that given
earlier: they never stop, they progress. The architecting process (along with
many other parallel tracks) continuously progresses from the abstract to the
concrete in a steady reduction of abstraction. In a narrow sense, there are
recognizable points at which some aspects of architecting and modeling must
stop. To physically fabricate a component of a system, its design must be
frozen. It may not stop until the lathe stops turning or the final line of code
is typed in, but the physical object is the realization of some design. In the
broader sense, even physical fabrication does not stop architecting. Opera-
tions can be interpreted only through recourse to models, though those
models may be quite precise when driven by real data. In some systems,
such as distant space probes, even operational modeling is still somewhat
remote.

The significant progressions in architecting are promoted by the role of
the architect. The architect's role makes two decisions foremost, the selection
of a system concept and the certification of the built system. The former
decision is almost certain to be driven by heuristic criteria, the latter is more
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open, depending on how precisely the criteria of fitness for use can be
defined. A system concept is suitable when it is both satisfactory and feasible.
Only the client can judge the system “satisfactory,” though the client will
have to rely on information provided by the architect. In builder-architected
systems the architect must often make the judgment for the client (who will
hopefully appear after the system reaches the market). Feasible means the
system can be developed and deployed with acceptable risk. Certification
requires that the system as built adequately fulfills the client’s purposes,
including cost, as well as the contract with the builder.

Risk, a principal element in judging feasibility, is almost certain to be
judged heuristically. The rational means of handling risk is through proba-
bility, but a probabilistic risk assessment requires some set of precedents to
estimate over. That is, a series of developments of similar nature for which
the performance and cost history is known. By definition, such a history
cannot be available for unprecedented systems, so the architect is left to
estimate risk by other means. In well-defined domains, past history should
be able to provide a useful guide; it certainly does for civil architects. Civil
architects are expected to control cost and schedule risk for new structures,
and they can do so because construction cost estimation methods are rea-
sonably well developed. The desired approach is to use judgment, and
perhaps a catalog of domain-specific heuristics, to size the development
effort against past systems, and use documented development data from
those past systems to estimate risk. For example, in software systems, cost
models based on code size estimates are known, and they are often calibrated
against past development projects in builder organizations. If the architect
can deduce code size and possible variation in code size reliably, a traceable
estimate of cost risk is possible.

The judgment of how satisfactory a concept is, and the certification
process, both depend on how well customer purposes can be specified. Here
there is great latitude for both heuristic and rational means. If customer
purposes can be precisely specified, it may be possible to precisely judge
how well a system fulfills them, either in prospect or retrospect. In prospect
it depends on having behavior and performance models that are firmly
attached to customer purposes. With good models with certain connection
between the models and implementation technology, the architect can con-
fidently predict how well the planned system will fulfill the desired pur-
poses. The retrospective problem is that of certification, of determining how
well the built system fulfills the customer purposes. Again, well-founded,
scientific models and mature implementation technologies make system
assessment relatively certain.

More heuristic problems arise when the same factors do not apply.
Mainly, this occurs when it is hard to formulate precise customer purpose
models, when it is hard to determine whether or not a built system fulfills
a precisely stated purpose, or when there is uncertainty about the connection
between model and implemented system. The second two are related since
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they both concern retrospective assessment of architecture models against a
built system in the presence of uncertainty.

The first case applies when customer purposes are vague or likely to
change in response to actual experience with the system. When the customer
is relatively inexperienced with systems of the type, his or her perception of
the system’s value and requirements is likely to change, perhaps radically,
with experience. Vague customer purposes can be addressed through the
architecture; for example, an emphasis on options in the architecture and a
development plan that includes early user prototypes with the ability to feed
prototype experience back into the architecture. This is nicely captured in
two heuristics:

Firm commitments are best made after the prototype
works.9

Hang on to the agony of decision as long as possi-
ble.10

The second case, problems in determining whether or not a built system
fulfills a given purpose, is mainly a problem when requirements are funda-
mentally immeasurable or when performance is demanded in an environ-
ment that cannot be provided for test. For example, a space system may
require a failure rate so low it will never occur during any practical test (the
ultraquality problem); or, a weapon system may be required to operate in
the presence of hostile countermeasures that will not exist outside a real
combat environment. Neither of these requirements can be certified by test
or analysis. To certify a system with requirements like these it is necessary
to either substitute surrogate requirements agreed to by the client, or to find
alternative certification criteria.

To architect-in certifiable criteria essentially means to substitute a refined
set of measurable criteria for the client's immeasurable criteria. This requires
the architect to be able to convince the client of the validity of a model for
connecting the refined criteria to the original criteria. One advantage of a
third-party architect is the independent architect’s greater credibility in mak-
ing just such arguments, which may be critical to developing a certifiable
system. A builder-architect, with an apparent conflict of interest, may not
have the same credibility. The model that connects the surrogate criteria to
the real, immeasurable criteria may be a detailed mathematical model or
may be quite heuristic. An example of the former category is failure tree
analysis that tries to certify untestable reliability levels from testable sub-
system reliability levels. A more heuristic model may be more appropriate
for certifying performance in uncertain combat environments. While the
performance required is uncertain, criteria like flexibility, reprogrammability,
performance reserve, fallback modes, and ability to withstand damage can
be specified and measured.
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Rational and heuristic methods can be combined to develop ultraquality
systems. A good example is a paper by Jaynarayan.11 This paper discusses
the architectural principles for developing flight control computers with
failure rates as low as 10-10/h. Certification of such systems is a major prob-
lem. The authors discuss a two-pronged approach. First, instead of using
brute-force failure modes and effects analysis with its enormous fault trees,
they design for “Byzantine failure.” Byzantine failure means failure in which
the failed element actively, intelligently, and malevolently attempts to cause
system failure. They go on to describe formal methods for designing systems
resistant to a given number of Byzantine faults, thus replacing the need to
trace fault trees for each type of failure. The analysis of failure trees is then
brought down to tractable size. The approach is based on designs that do
not allow information or energy from a possibly failed element to propagate
outside an error confinement region. The second prong is a collection of
guidelines for minimizing common mode failures. In a common mode fail-
ure, several nominally independent redundant units fail simultaneously for
the same reason. These are the system failures due to design errors rather
than component failures. Because one cannot design-in resistance to design
failure, other means are necessary. The guidelines, partially a set of heuristics,
provide guidance in this otherwise nonmeasurable area.

The third and last case is uncertainty about the connection between the
model and the actual system. This is an additional case where informed
judgment and heuristics are needed. To reduce the uncertainty in modeling
requires tests and prototypes. The best guidance on architecting prototypes
is to realize that all prototypes should be purpose-driven. Even when the
purposes of the system are less than clear, the purposes of the prototype
should be quite clear. Thus, the architecting of the prototype can be
approached as architecting a system, with the architect as the client.

Architecture and design disciplines
Not very many years ago the design of a system of the complexity of several
tens of thousands of logic gates was a major undertaking. It was an archi-
tectural task in the sense it was probably motivated by an explicit purpose
and required the coordination of a multidisciplinary design effort. Today,
components of similar and much higher complexity are the everyday build-
ing blocks of the specialized digital designer. No architectural effort is
required to use such a component, or even to design a new one. In principle,
art has been largely removed from the design process because the discipline
has a firm scientific basis. In other words, the design discipline or domain
is well worked out, and the practitioners are recognized specialists. Today
it is common to discuss digital logic synthesis directly from fairly level
specifications, even if automated synthesis is not yet common practice. So
there should be no surprise if systems that today tax our abilities and require
architectural efforts one day become routine with recognized design meth-
odologies taught in undergraduate courses.
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The discussion of progression leads to further understanding of the
distinctions between architecture and engineering. The basic distinction was
reviewed in the Preface, the types of problems addressed and the tools used
to address them. A refinement of the distinction was discussed in Chapter
1, the extent to which the practitioner is primarily concerned with scoping,
conceptualizing, and certification. By looking at the spectrum of architecture
and engineering across systems disciplines, these distinctions become clearer
and can be further refined. First, the methods most associated with archi-
tecting (heuristics) work best one step beyond where rational design disci-
plines have been worked out. This may or may not be at the forefront of
component technology. Large-scale systems, by their nature, push the limits
of scientific engineering at whatever level of technology development is
current. But, as design and manufacturing technology change the level of
integration that is considered a component, the relative working position of
the architect inevitably changes. Where the science does not exist the
designer must be guided by art. With familiarity and repetition, much that
was done heuristically can now be done scientifically or procedurally.

However, this does not imply that where technology is mature architect-
ing does not exist. If it did, there would be no need for civil architects. Only
systems that are relatively unique need to be architected. Development issues
for unique systems contain a kernel of architectural concerns that transcend
whatever technology or scientific level is current. This kernel concerns the
bridge between human needs (which must be determined through social
interaction and are not the domain of science) and technological systems. In
low-technology systems, like buildings, only the nonroutine building needs
to be architected. But dealing with the nonroutine, the unique, the cli-
ent/user-customized, is different from other engineering practices. It con-
tains an irreducible component of art. A series of related unprecedented
systems establishes a precedent. The precedent establishes recognized pat-
terns, sometimes called architectures, of recognized worth. Further, systems
in the field will commonly use those established architectures, with varia-
tions more on style than in core structure.

Current development in software engineering provides an example of
evolution to a design discipline. Until relatively recently the notion of soft-
ware engineering hardly existed; there was only programming. Program-
ming is the process of assembling software from programming language
statements. Programming language statements do not provide a very rich
language for expressing system behaviors. They are constrained to basic
arithmetic, logical, and assignment operations. To build complex system
behaviors, programs are structured into higher-level components that begin
to express system domain concepts; but in traditional programming each of
the components must be handcrafted from the raw material of programming
languages.

The progression in software is through the construction and standard-
ization of components embodying behaviors closer and closer to problem
domains. Instead of programming in what was considered a “high-level
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language,” the engineer can now build a system from components close to
the problem domain. The programming language is still used, but it may be
used primarily to knit together prebuilt components. Programming libraries
have been in common use for many years. The libraries shipped with com-
mercial software development environments are often very large and contain
extensive class or object libraries. In certain domains the gap has grown very
small. 

Example: The popular mathematics package MatLab
allows direct manipulation of matrices and vectors. It
also provides a rich library of functions targeted at
control engineers, image processing specialists, and
other fields. One can dispense with the matrices and
vectors altogether by “programming” with a graphical
block diagram interface that hides the computational
details and provides hundreds of prebuilt blocks. Fur-
ther extensions allow the block diagram to be compiled
into executable programs that run on remote machines.
In fact, direct connection to operating real-time sys-
tems for real-time control is possible.

Wherever a family of related systems is built, a set of accepted models
and abstractions appears and forms the basis for a specialized design disci-
pline. If the family becomes important enough, the design discipline will
attract enough research attention to build scientific foundations. It will truly
become a design discipline when universities form departments devoted to
it. At the same time, a set of common design abstractions will be recognized
as “architectures” for the family. Mary Shaw, observing the software field,
finds components and patterns constrained by component and connector
vocabulary, topology, and semantic constraints. These patterns can be termed
“styles” of architecture in the field, as discussed in Chapter 6, for software.

Architecture and patterns

The progression from “inspired” architecture to formal design method is
through long experience. Long experience in the discipline by its practitio-
ners eventually yields tested patterns of function and form. Patterns, pattern
languages, and styles are a formalization of this progression. Architecting in
a domain matures as architects identify reusable components and repeating
styles of connection. Put another way, they recognize recurring patterns of
form and their relationships to patterns in problems. In a mature domain,
patterns in both the problem and solution domain develop rigorous expres-
sion. In digital logic (a relatively mature design domain) problems are stated
in formal logic and solutions in equally mathematically well-founded com-
ponents. In a less mature domain the patterns are more abstract or heuristic.
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A formalization of patterns in architecture is due to Christopher Alex-
ander.12 Working within civil architecture and urban design, Alexander
developed an approach to synthesis based on the composition of formalized
patterns. A pattern is a recurring structure within a design domain. They
consist of both a problem or functional objective for a system and a solution.
Patterns may be quite concrete (such as “a sunny corner”) or relatively
abstract (such as “masters and apprentices”). A template for defining a
pattern is

1. A brief name that describes what the pattern accomplishes
2. A concise problem statement
3. A description of the problem including the motivation for the pattern

and the issues in resolving the problem
4. A solution, preferably stated in the form of an instruction
5. A discussion of how the pattern relates to other patterns in the lan-

guage

A pattern language is set of patterns complete enough for design within
a domain. It is a method for composing patterns to synthesis solutions to
diverse objectives. In the Alexandrian method the architect consults sets of
patterns and chooses from them those patterns which evoke the elements
desired in a project. The patterns become the building blocks for synthesis,
or suggest important elements that should be present in the building. The
patterns each suggest instructions for solution structure, or contain a solution
fragment. The fragments and instructions are merged to yield a system
design.

Because the definition of a pattern and a pattern language are quite
general, they can be applied to other forms of architecture. The ideas of
patterns and pattern languages are now a subject of active interest in soft-
ware engineering.* Software architects often use the term style to refer to
recurring patterns in high-level software design. Various authors have sug-
gested patterns in software using a pattern template similar to that of Alex-
ander. An example of a software pattern is “callbacks and handlers,” a
commonly used style of organizing system-dependent bindings of code to
fixed behavioral requirements.

The concept of a style is related to Alexandrian patterns since each style
can be described using the pattern template. Patterns are also a special class
of heuristic. A pattern is a prescriptive heuristic describing particular choices
of form and their relationship to particular problems. Unlike patterns, heu-
ristics are not tied to a particular domain.

Although the boundaries are not sharp, heuristics, patterns, styles, and
integrated design methods can be thought to form a progression. Heuristics
are the most general, spanning domains and categories of guidance. How-

* A brief summary with some further references is Bercuzk, C., Hot topics, finding solutions
through pattern languages, IEEE Computer, pp. 75-76, 1995.
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ever, they are also the least precise and give the least guidance to the novice.
Patterns are specially documented, prescriptive heuristics of form. They
prescribe (perhaps suggest) particular solutions to particular problems
within a domain. A style is still more precisely defined guidance, this time
in the form of domain-specific structure. Still farther along the maturity curve
are fully integrated design methods. These have domain-specific models and
specific procedures for building the models, transforming models of one
type into another type, and implementing a system from the models. 

Thus, the largest scale progression is from architecting to a rigorous and
disciplined design method; one that is essential to the normative theory of
design. Along the way the domain acquires heuristics, patterns, and styles
of proven worth. As the heuristics, patterns, and styles become more specific,
precise, and prescriptive, they give the most guidance to the novice and
come closest to the normative (what should be) theory of design. As design
methods become more precise and rigorous they also become more amenable
to scientific study and improvement. Thus the progression carries from a
period requiring (and encouraging) highly creative and innovative architect-
ing to one defined by quantifiable and provable science.

Civil architecture experience suggests that at the end of the road there
will still be a segment of practice that is best addressed through a fusion of
art and science. This segment will be primarily concerned with the clients
of a system, and will seek to reconcile client satisfaction and technical fea-
sibility. The choice of method will depend on the question. If you want to
know how a building will fare in a hurricane, you know to ask a structural
engineer. If you want the building to express your desires, and do so in a
way beyond a rote calculation of floor space and room types, you know to
ask an architect.

Conclusions
A fundamental challenge in defining a system architecting method or a
system architecting tool kit is its unstructured and eclectic nature. Architect-
ing is synthesis-oriented and operates in domains and with concerns that
preclude rote synthesis. Successful architects proceed through a mixture of
heuristic and rational or scientific methods. One meta-method that helps
organize the architecting process is that of progression.

Architecting proceeds from the abstract and general to the domain-
specific. The transition from the unstructured and broad concerns of archi-
tecting to the structured and narrow concerns of developed design domains
is not sharp. It is progressive as abstract models are gradually given form
through transformation to increasingly domain-specific models. At the same
time, all other aspects of the system undergo concurrent progressions from
general to specific.

While the emphasis has been on the heuristic and unstructured compo-
nents of the process, that is not to undervalue the quantitative and scientific
elements required. The rational and scientific elements are tied to the specific
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domains where systems are sufficiently constrained to allow scientific study.
The broad outlines of architecting are best seen apart from any specific
domain. A few examples of the intermediate steps in progression were given
in this chapter. The next chapter brings these threads together by showing
specific examples of models and their association with heuristic progression.
In part, this is done for the domains of Part Two, and in part for other
recognized large domains not specifically discussed in Part Two.

Exercises

1. Find an additional heuristic progression by working from the specific
to the general. Find one or more related design heuristics in a tech-
nology-specific domain. Generalize those heuristics to one or more
heuristics that apply across several domains.

2. Find an additional heuristic progression by working from the general
to the specific. Choose one or more heuristics from the Appendix.
Find or deduce domain-specific heuristic design guidelines in a tech-
nology domain familiar to you.

3. Examine the hypothesis that there is an identifiable set of “architec-
tural” concerns in a domain familiar to you. What issues in the domain
are unlikely to be reducible to normative rules or rational synthesis?

4. Trace the progression of behavioral modeling throughout the devel-
opment cycle of a system familiar to you.

5. Trace the progression of physical modeling throughout the develop-
ment cycle of a system familiar to you.

6. Trace the progression of performance modeling throughout the de-
velopment cycle of a system familiar to you.

7. Trace the progression of cost estimation throughout the development
cycle of a system familiar to you.
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chapter ten

Integrated modeling 
methodologies

Introduction
The previous two chapters explored the concepts of model views, model
integration, and progression along parallel paths. This chapter brings
together these threads by presenting examples of integrated modeling meth-
odologies. Part Three concludes in the next chapter where we review the
architecture community’s standards for architecture description. The meth-
odologies are divided by domain-specificity, with the first models more
nearly domain-independent and later models more domain-specific.

Architecting clearly is domain dependent. A good architect of avionics
systems, for example, may not be able to effectively architect social systems.
Hence, there is no attempt to introduce a single set of models suitable for
architecting everything. The models of greatest interest are those tied to the
domain of interest, although they must support the level of abstraction
needed in architecting. The integrated models chosen for this chapter include
two principally intended for real-time, computer-based, mixed hard-
ware/software systems (H/P and Q2FD), three methods for software-based
systems, one method for manufacturing systems, and, conceptually at least,
some methods for including human behavior in sociotechnical system
descriptions.

The examples for each method were chosen from relatively simple sys-
tems. They are intended as illustrations of the methods and their relevance
to architectural modeling, and to fit within the scope of the book. They are
not intended as case studies in system architecting. 

General integrated models
The two most general of the integrated modeling methods are Hatley-Pirbhai
(H/P) and Q2FD. The Unified Modeling Language (UML) is also quite gen-
eral, although in practice it is used mostly in software systems and is dealt
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with there. As the UML evolves, it is likely that it will become of general
applicability in systems engineering.

Hatley/Pirbhai — computer-based reactive systems

A computer-based reactive system is a system that senses and reacts to events
in the physical world, and in which much of the implementation complexity
is in programmable computers. Multifunction automobile engine controllers,
programmable manufacturing robots, and military avionics systems (among
many others) all fall into this category. They are distinguished by mixing
continuous, discrete, and discrete-event logics, and being implemented
largely through modern computer technology. The integrated models used
to describe these systems emphasize detailed behavior descriptions, and
form descriptions matched to software and computer hardware technologies
and some performance modeling. Recent efforts at defining an Engineering
of computer-based Systems discipline1 are directed at systems of this type.

Several different investigators have worked to build integrated models
for computer-based reactive systems. The most complete example of such
integration is the Hatley-Pirbhai (H/P) methodology.* Other methods, nota-
bly the FFBD method used in computer tools by Ascent Logic and the
StateMate formalism, are close in level of completeness. The UML is also
close to this level of completeness, and may surpass it, but is not yet widely
used in systems applications. This section concentrates on the structure of
H/P. With the concepts of H/P in mind, it is straightforward to make a
comparative assessment of other tools and methods.

H/P defines a system through three primary models: two behavioral
models — the Requirements Model (RM) and the Enhanced Requirements
Model (ERM) — and a model of form called the Architecture Model (AM).
The two behavioral models are linked through an embedding process. Static
allocation tables link the behavioral and form models. The performance view
is linked statically through timing allocation tables. More complex perfor-
mance models have been integrated with H/P, but descriptions have only
recently been published. A dictionary defines the data view. This dictionary
provides a hierarchical data element decomposition, but does not provide a
syntax for defining dynamic data relationships. No managerial view is pro-
vided, although managerial metrics have been defined for models of the
H/P type.

Both behavioral models are based on DeMarco-style data flow diagrams.
The data flow diagrams are extended to include finite state and event pro-
cessing through what is called the control model. The control model uses

* Wood, D. P. and Wood, W. G., Comparative Evaluation of Four Specification Methods for
Real-Time Systems, Software Engineering Institute Technical Report, CMU/SEI-89-TR-36, 1989.
This study compared four popular system modeling methods. Their conclusion was that the
Hatley-Pirbhai method was the most complete of the four, though similarities were more
important than the differences. In the intervening time, many of the popular methods have
been extended and additional tools reflecting multiview integration have begun to appear.
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data flow diagram syntax with discrete events and finite state machine
processing specifications. The behavioral modeling syntax is deliberately
nonrigorous and is not designed for automated execution. This “lack” of
rigor is deliberate; it is intended to encourage flexibility in client/user com-
munication. The method believes the flexibility rather than rigor at this stage
enhances communication with clients and users. The method also believes,
through its choice of data flow diagrams, that functional decomposition
communicates to stakeholders better than specification by example methods,
such as use-cases. The ERM is a superset of the requirements model. It
surrounds the core behavioral model and provides a behavioral specification
of the processing necessary to resolve the physical interfaces into problem
domain logical interfaces. The ERM defines implementation-dependent
behaviors, such as user interface and physical I/O.

Example: microsatellite imaging system

Some portions of an H/P model formulated for the imaging (camera) sub-
system of a microsatellite provide an illustration of the H/P concepts. This
example is to present the flavor of the H/P idiom for architects, not to fully
define the imaging system. The level chosen is representative of that of a
subsystem architecture (not all architecting has to be done on systems of
enormous scale). Figure 10.1 shows the top-level behavioral model of the
imaging system, defined as a data flow diagram (DFD). Each circle on the
diagram represents a data-triggered function or process. For example, pro-
cess Number 2, Evaluate Image, is triggered by the presence of a Raw Image
data element. Also from the diagram, process Number 2 produces a data
element of the same type (the outgoing arrow labeled Raw Image) and
another data element called Image Evals.

Each process in the behavior model is defined either by its own data
flow diagram or by a textual specification. During early development, pro-
cesses may be defined with brief and nonrigorous textual specifications.
Later, as processes are allocated to physical modules, the specifications are
expanded in greater detail until implementation of appropriate rigor is
reached. Complex processes may have more detailed specifications even
early in the process. For example, in Figure 10.2 process Number 1, Form
Image, is expanded into its own diagram.

Figure 10.2 also introduces control flow. The dotted arrows indicate flow
of control elements, and the solid line into which they flow is a control
specification. The control specification is shown as part of the same figure.
Control flows may be interpreted either as continuous time, discrete valued
data items, or discrete events. The latter interpretation is more widely used,
although it is not preferred in the published H/P examples. The control
specification is a finite state machine, here shown as a state transition dia-
gram, although other forms are also possible. The actions produced by the
state machine are to activate or deactivate processes on the associated data
flow diagram.
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All data elements appearing on a diagram are defined in the data dic-
tionary. Each may be defined in terms of lower-level data elements. For
example, the flow Raw Image appearing in Figure 10.2 appears in the data
dictionary as:

Figure 10.1

Figure 10.2
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Raw Image = 768{484{Pixel}}

Indicating, in this case, that Raw Image is composed of 768 × 484 repe-
titions of the element Pixel. At early stages, Pixel is defined qualitatively as
a range of luminance values. In later design stages the definition will be
augmented, though not replaced, by a definition in terms of implementation-
specific data elements.

In addition to the two behavior models, the H/P method contains an
AM. The AM is the model of form that defines the physical implementation.
It is hierarchical and it allows sequential definition in greater detail by
expansion of modules. Figure 10.3 shows the paired architecture flow and
interconnect models for the microsatellite imaging system.

The H/P block diagram syntax partitions a system into modules, which
are defined as physically identifiable implementation elements. The flow
diagram shows the exchange of data elements among the modules. Which
data elements are exchanged among the modules is defined by the allocation
of behavioral model processes to the modules.

The interconnection model defines the physical channels through which
the data elements flow. Each interconnect is further defined in a separate
specification. For example, the interconnect T-Puter Channel 1 connects the
processor module and the camera control module. Allocation requires cam-
era commands to flow over the channel. Augmentations to the data dictio-
nary define a mapping between the logical camera commands and the line
codes of the channel. If the channel requires message framing, protocol
processing, or the like, it is defined in the interconnection specification.
Again, the level of detail provided can vary during design based on the
interface’s impact on risk and feasibility.

Quantitative QFD (Q2FD) — performance-driven systems

Many systems are driven by quantitatively stated performance objectives.
These systems may also contain complex behavior or other attributes, but
their performance objectives are of most importance to the client. For these
systems it is common practice to take a performance-centered approach to
system specification, decomposition, and synthesis. A particularly attractive
way of organizing decomposition is through extended Quality Function
Deployment (QFD) matrices.2

QFD is a Japanese-originated method for visually organizing the decom-
position of customer objectives.3 It builds a graphical hierarchy of how
customer objectives are addressed throughout a system design, and it carries
the relevance of customer objectives throughout design. A Q2FD-based
approach requires that the architect:

1. Identify a set of performance objectives of interest to the customer.
Determine appropriate values or ranges for meeting these objectives
through competitive analysis.
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2. Identify the set of system-level design parameters that determine the
performance for each objective. Determine suitable satisfaction mod-
els that relate the parameters and objectives.

3. Determine the relationships of the parameters and objectives, and the
interrelationships among the parameters. Which affect which?

4. Set one or more values for each parameter. Multiple values may be
set, for example, minimum, nominal, and target. Additional slots
provide tracking from detailed design activities.

Figure 10.3
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5. Repeat the process iteratively using the system design parameters as
objectives. At each stage the parameters at the next level up become
the objectives at the next level down.

6. Continue the process of decomposition on as many levels as desired.
As detailed designs are developed, their parameter values can flow
up the hierarchy to track estimated performance for customer objec-
tives. This structure is illustrated in Figure 10.4.

Unfortunately, QFD models for real problems tend to produce quite large
matrices. Because they map directly to computer spreadsheets, this causes
no difficulty in modern work environments, but it does cause a problem in
presenting an example. Also, the graphic of the matrix shows the result, but
hides the satisfaction models. The satisfaction models are equations, simu-
lations, or assessment processes necessary to determine the performance
measure value. The original reference on QFD by Hauser contains a quali-
tative example of using QFD for objective decomposition, as do other books
on QFD. Two papers by one of the present authors4 contain detailed, quan-
titative examples of QFD performance decomposition using analytical engi-
neering models.

Integrated modeling and software
Chapters 8 and 9 introduced the ideas of model views and stepwise refine-
ment in the large. Both of these ideas have featured prominently in the
software engineering literature. Software methods have been the principal

Figure 10.4
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sources for detailed methods for expressing multiple views and development
through refinement. Software engineers have developed several integrated
modeling and development methodologies that integrate across views and
employ explicit heuristics. Three of those methods are described in detail:
structured analysis and design, ADARTS, and OMT. We also take up the
current direction in an integrated language for software-centric systems, the
UML.

The three methods are targeted at different kinds of software systems.
Structured analysis and design was developed in the late 1970s and early
1980s and is intended for single-threaded software systems written in struc-
tured procedural languages. ADARTS is intended for large, real-time, multi-
threaded systems written in Ada. Its methods do generalize to other envi-
ronments. OMT is intended for database-intensive systems, especially those
written in object-oriented programming languages. The UML is a merger of
object-oriented concepts from OMT and other sources.

Structured analysis and design

The first of the integrated models for software was the combination of
structured analysis with structured design.5 The software modeling and
design paradigms established in that book have continued to the present as
one of the fundamental approaches to software development. Structured
analysis and design models two system views, uses a variety of heuristics
to form each view, and connects to the management view through measur-
able characteristics of the analysis and design models (metrics).

The method prescribes development in three basic steps. Each step is
quite complex and is composed of many internal steps of refinement. The
first step is to prepare a data flow decomposition of the system to be built.
The second step is to transform that data flow decomposition into a function
and module hierarchy that fully defines the structure of the software in
subroutines and their interaction. The design hierarchy is then coded in the
programming language of choice. The design hierarchy can be mechanically
converted to software code (several tools do automatic forward and back-
ward conversion of structured design diagrams and code). The internals of
each routine are coded from the included process specifications, though this
requires human effort.

The first step, known as structured analysis, is to prepare a data flow
decomposition of the system to be built. A data flow decomposition is a tree
hierarchy of data flow diagrams, textual specifications for the leaf nodes of
the hierarchy, and an associated data dictionary. This method was first pop-
ularized by DeMarco,6 though the ideas had appeared previously, and it has
since been extensively modified and re-presented. Figures 10.1 and 10.2,
discussed in the previous example, show data flow diagrams. Behavioral
analysis by data flow diagram originated in software and has since been
applied to more general systems. The basic tenets of structured analysis are:
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1. Show the structure of the problem graphically, engaging the mind’s
ability to perceive structure and relationships in graphics.

2. Limit the scope of information presented in any diagram to five to
nine processes and their associated data flows.

3. Use short (<1 page) free-form and textual specifications at the leaf
nodes to express detailed processing requirements.

4. Structure the models so each piece of information is defined in one
and only one place. This eases maintenance.

5. Build models in which the processes are loosely coupled, strongly
cohesive, and obey a defined syntax for balance and correctness.

Structured design follows structured analysis and transforms a struc-
tured analysis model into the framework for a software implementation. The
basic structured design model is the structure chart. A structure chart, one
is illustrated in Figure 10.5, shows a tree hierarchy of software routines. The
arrows connecting boxes indicate the invocation of one routine or subroutine
by another. The circles, arrows, and names show the exchange of variables
and are known as data couples. Additional symbols are available for patho-
logical connection among routines, such as unconditional jumps. Each box
on the structure chart is linked to a textual specification of the requirements
for that routine. The data couples are linked to a data dictionary.

Structure charts are closely aligned with the ideas and methods of struc-
tured programming, which was a major innovation at the time structured
design was introduced. Structure charts can be mechanically converted to
nested subroutines in languages that support the structured programming
concepts. In combination, the chart structure, the interfaces shown on the
chart, and the linked module specifications define a compilable shell for the
program and an extended set of code comments. If the module specifications
are written formally, they can be the module’s program design language, or
they can be compiled as module pre- and postcondition assertions.

The structured analysis and design method goes farther in providing
detailed heuristics for transformation of an analysis model into a structure
chart, and for evaluation of alternative designs. The heuristics are strongly
prescriptive in the sense that they are stated procedurally. However, they
are still heuristics because their guidance is provisional and subject to inter-
pretation in the overall context of the problem. The transformation is a type
of refinement or reduction of abstraction. The data flow network of the
analysis phase defines data exchange, but it does not define execution order
beyond that implied by the data flow. Hence the structure chart removes the
abstraction of flow of control by fixing the invocation hierarchy. The heuris-
tics provided are of two types. One type gives guidelines for transforming
a data flow model fragment into a module hierarchy. The other type mea-
sures comparative design quality to assist in selection among alternative
designs. Examples of the first type include:
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Step one: Classify each data flow diagram as “trans-
form-oriented” or “transaction-oriented” (these
terms are further defined in the method).
Step two: In each case, find either the “transform
center” or the “transaction center” of the diagram and
begin factoring the modules from there.

Further heuristics follow for structuring transform-centered and trans-
action-centered processes. In the second category are several quite famous
design heuristics:

• Choose designs which are loosely coupled. Cou-
pling, from loosest to tightest, is measured as: data,
data structure, control, global, and content.

Figure 10.5
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• Choose designs in which the modules are strongly
cohesive. Cohesion is rated as (from strongest to
weakest): functional, sequential, communication-
al, procedural, temporal, logical, and coincidental.

• Choose modules with high fan-in and low fan-out.

As discussed in Chapter 9, very general and domain-specific heuristics
may be related by chains of refinement. In structured analysis and design,
the software designer transforms rough ideas into data flow diagrams, data
flow diagrams into structure charts, and structure charts into code. At the
same time, heuristic guidelines like “strive for loose coupling” are given
measurable form as the design is refined into specific programming con-
structs.

Various efforts have also been made to tie structured analysis and design
to managerial models by predicting cost, effort, and quality from measurable
attributes of data flow diagrams or structure charts. This is done both directly
and indirectly. A direct approach computes a system complexity metric from
the data flow diagrams or the structure charts. That complexity metric then
must be correlated to effort, cost, schedule, or other quantities of manage-
ment interest. A later work by DeMarco7 describes a detailed approach on
these lines, but the suggested metrics have not become popular nor have
they been widely validated on significant projects. Other metrics, such as
function or feature points, that are more loosely related to structured analysis
decompositions have found some popularity. Software metrics is an ongoing
research area, and there is a growing body of literature on measurements
that appear to correlate well with project performance.

An alternative linkage is indirect by using the analysis and design mod-
els to guide estimates of the most widely accepted metrics, the constructive
cost model (COCOMO) and effective lines of code (ELOC). COCOMO is
Barry Boehm’s famous effort estimation formula. The model predicts devel-
opment effort from a formula involving the total lines of code, an exponent
dependent on the project type, and various weighting factors. One problem
with the original COCOMO model is that it does not differentiate between
newly written lines of code and reused code. One method (there are others)
of extending the COCOMO model is to use ELOC in place of total lines of
code. ELOC measures the size of a software project, giving allowance for
modified and reused code. A new line of code counts for one ELOC, modified
and unmodified reused code packages count for somewhat less. The weight
factors given to each are typically determined organization-by-organization
based on past measurements. The counts by subtype are summed with their
weights and the total treated as new lines in the COCOMO model.

The alternative approach is to use the models to guide ELOC estimation.
Early in the process, when no code has been written, the main source of
error in COCOMO is likely to be errors in the ELOC estimate. With a data
flow model in hand, engineers and managers can go through it process-by-
process and compare the requirements to past efforts by the organization.
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This, at least, structures the estimation problem into identifiable pieces.
Similarly, the structured design model can be used in the same way, with
estimates of the ELOC for each module flowing upward into a system-level
estimate. As code is written the estimates become facts and, hopefully, the
estimated and actual efforts will converge. Of course, if the organization is
incapable of producing a given ELOC level predictably, then any linkage of
analysis and design models to managerial models is moot. 

The architect needs to be cognizant of these issues insofar as they affect
judgments of feasibility. As the architect develops models of the system, they
should be used jointly by client and builder. The primary importance of cost
models is in the effect they have on the client’s willingness to go forward
with a project. A client’s resources are always limited, and an intelligent
decision on system construction can be made only with knowledge of the
resources it will consume. Of course, there will be risk, and in immature
fields like software the use of risk mitigation techniques (such as spiral
development) may partially replace accurate early estimates. Both the client’s
value judgments and the builder’s estimates should be made in the context
of the models. If builder organizations have a lot of variance in what effort
is required to deliver a fixed complexity system, then that variance is a risk
to the client.

ADARTS

Ada-based Design Approach for Real-Time Systems (ADARTS) is an exten-
sively documented example of a more advanced integrated modeling
method for software. The original work on data flow techniques was directly
tied to the advanced implementation paradigms of the day. In a similar way,
the discrete event, system-oriented specification methods like H/P can be
closely tied to implementation models. In the case of real-time, event-driven
software, one of the most extensive methods is the ADARTS8 methodology
of the Software Productivity Consortium. The ADARTS method combines a
discrete event-based behavioral model with a detailed, stepwise refined,
physical design model. The behavioral model is based on data flow diagrams
extended with the discrete event formalisms of Ward and Mellor9 (which are
similar to those of H/P). The physical model includes evolving abstractions
for software tasks or threads, objects, routines, and interfaces. It also includes
provisions for software distributed across separate machines and their com-
munication. ADARTS includes a catalog of heuristics for choosing and refin-
ing the physical structure through several levels of abstraction.

ADARTS links the behavioral and physical models through allocation
tables. Performance decomposition and modeling is considered specifically,
but only in the context of timing. There are links to sophisticated scheduling
formalisms and SPC-developed simulation methodologies as part of this
performance link. Again, managerial views are supported through metrics
where they can be calculated from the models. Software domain-specific
methods can more easily perform the management metric integration since
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a variety of cost and quality metrics that can be (at least roughly) calculated
from software design models are known.

The example shown is a simplified version of the first two design refine-
ments required by ADARTS applied to the microsatellite imaging system
originally discussed in the Hatley/Pirbhai example. The resulting diagrams
are shown in Figure 10.6. The ADARTS process takes the functional hierarchy
of the behavioral model and breaks it into undifferentiated components. Each
component is shown on the diagram by a cloud-shaped symbol, indicating
its specific implementation structure has not yet been decided. The clouds
exchange data elements dependent on the behavior allocated to each cloud.
Various heuristics and engineering judgment guide the choice of clouds.

The next refinement specializes the clouds to tasks, modules or objects,
and routines. ADARTS actually uses several discrete steps for this, but they
are combined into one for the simple example given here. Again, the designer
uses ADARTS-provided heuristics and individual judgment in making the
refinements. In the example, the two tasks result from the need to provide
asynchronous external communications and overall system control. The
clouds which hide the physical and logical interfaces to hardware are multi-
entry modules. The entries are chosen from the principal user functions
addressed by the interface. For example, the Camera I/O module has entries
that correspond to its controls (camera shutter speed, camera gain, filter
wheel position, etc.). The single-thread sequence of taking an image is imple-
mented as a simple routine-calling tree.

To avoid diagram clutter the diagram is not fully annotated with the
data elements and their flow directions. In complex systems diagram clutter
is a serious problem, and one not well addressed by existing tools. The
architect needs to suppress some detail to process the larger picture. But
correct software ultimately depends on getting each detail right. In the
second part of the figure the arrowed lines indicate direction of control, not
direction of data flow. Additional enhancements specify flow. The next step
in the ADARTS process, not shown here, is to refine the task and module
definitions once again into language- and system-specific software units.
ADARTS as published assumes the use of the Ada language for implemen-
tation. When implementing in the Ada language, tasks become Ada tasks
and multientry modules become packages. The public/private interface
structure of the modules is implemented directly using constructs of the Ada
language. Other languages can be accommodated in the same framework
by working out language- and operation-specific constructs equivalent to
tasks, modules, and routines. For example, in the C language there is no
language construct for tasks or multientry modules. But multientry modules
can be implemented in a nearly standard way using separately compilable
files on the development system, the static declaration, and suitable header
files. Similarly, many implementation environments support multitasking,
and some development environments supply task abstractions for the pro-
grammer’s use.
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Once again, the pattern of stepwise reduction of abstraction is evident.
Design is conducted through steps, and at each step a model of the client
needs is refined in an implementation environment-dependent way. In envi-
ronments well matched to the problem modeling method, the number of

Figure 10.6

2000 CRC Press LLC



steps is small; client-relevant models can be nearly directly implemented. In
less well-suited environments layers of implementation abstraction become
necessary.

OMT

The Hatley/Pirbhai method and its cousins are derived from structured
functional decomposition, structured software design, and hardware system
engineering practice. The object-oriented methods, of which OMT10 is a
leading member, derive from data-oriented and relational database software
design practice. Relational modeling methods focus solely on data structure
and content and are largely restricted to database design (where they are
very powerful). Object-oriented methods package data and functional
decomposition together. Where structured methods build a functional
decomposition backbone on which they attempt to integrate a data decom-
position, the object-oriented methods emphasize a data decomposition on
which the functional decomposition is arranged. Some problems naturally
decompose nicely in one method and not in the other. Complex systems can
be decomposed with either, but either approach will yield subsections where
the dominant decomposition paradigm is awkward.

OMT combines the data (relational), behavioral, and physical views. The
physical view is well captured for software-only systems, but specific
abstractions are not given for hardware components. While, in principle,
OMT and other object-oriented methods can be extended to mixed hard-
ware/software systems, and even more general systems, there is a lack of
real examples to demonstrate feasibility. Broad, real experience has been
obtained only for predominantly software-based systems.

Neither the OMT nor other object-oriented methods substantially inte-
grate the performance view. Again, managerial views can be integrated to
the extent that useful management metrics can be derived from the object
models. Because of the software orientation of object-oriented methods, there
have been some efforts to integrate formal methods into object models.

As an example of the key ideas of object-oriented methods we present
part of an object model. Object modeling starts by identifying classes. Classes
can be thought of (for those unfamiliar with object concepts) as templates
for objects or types for abstract data types. They define the object in terms
of associated simple data items and functions associated with the object.
Classes can specialize into subclasses which share the behavior and data of
their parent while adding new attributes and behavior. Objects may be
composed of complex elements or relate to other objects. Both composition
or aggregation and association are part of a class system definition. The
microsatellite imager described in the preceding section will produce images
of various types. Consider an image database for storing the data produced
by the imager. A basic class diagram is shown in Figure 10.7 to illustrate
specific instances of some of the concepts.
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A core assumption, which the model must capture, is that images are of
several distinct but related types. The actual images captured by the cameras
are single grayscale images. Varying sets of grayscale images captured
through different filters are combined into composite multiband images,
with a particular grayscale image possibly part of several composite images.
In addition, images will be displayed on multiple platforms, so we demand
a common “rendered” image form. Each of these considerations is illustrated
in Figure 10.7.

The top box labeled Image indicates there is a data class Image. That
class contains two data attributes — CompressedSize and ExpandedSize —
and three operations or “methods” (the functions Render(), Compress(), and
Expand()). The triangle boxed lines down to the class boxes Multi-Band
Image and Single Image defines those two classes as subclasses of Image.
As subclasses they are different than their parent class, but inherit the parent
class’s data attributes and associated methods.

The class Single Image is the basic image data object descriptor. It con-
tains two data arrays, one to hold the raw image and the other to hold the
compressed form. It also has associated basic image processing methods. A
multiband image is actually made up of many single images suitably pro-

Figure 10.7
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cessed and composited. This is defined on the diagram by the round-headed
line connecting the two class boxes. The labeling defines a 1 to N way
association named Built From. The additional methods associated with
Multi-Band Image build the image from its associated simple images.

The two additional associations define other record keeping and display.
The associated line between Single Image and Shot Record associates an
image with a potentially complicated data record of when it was taken and
the conditions at that moment. The association line to Display Picture shows
the association of an image with a common display data structure. Both
associations, in these cases, are one-to-one.

Figure 10.7 is considerably simplified on several points. A complete
definition in OMT would require various enhancements to show actual types
associated with data attributes and operations. In addition, several enhance-
ments are required to distinguish abstract methods and derived attributes.
A brief explanation of the former is in order. Consider the method Compress
in the class Image. The implementation of image compression may be quite
different for a single grayscale image and for a composited multiband image.
A method that is reimplemented in subclasses is called either virtual or
abstracted and may be noted by a diagrammatic enhancement.

The logic of object-oriented methods is to decompose the system in a
data-first fashion, with functions and data tightly bound together in classes.
Instead of a functional decomposition hierarchy we have a class hierarchy.
Functional definition is deferred to the detailed definition of the classes. The
object-oriented logic works well where data, and especially data relation
complexity, dominates the system.

Object-oriented methods also follow a stepwise reduction of abstraction
approach to design. From the basic class model, we next add implementa-
tion-specific considerations. These will determine whether or not additional
model refinements or enhancements are required. If the implementation
environment is strongly object-oriented there will be direct implementations
for all of the model constructs. For example, in an object-oriented database
system one can declare a class with attributes and methods directly and have
long-term storage (or “persistence”) automatically managed. In non-object
environments it may be necessary to manually flatten class hierarchies and
add manual implementations of the model features. Manual adjustments
can be captured in an intermediate model of similar type. The steps of
abstraction reduction depend on the environment. In a favorable implemen-
tation environment the model nearest to the client’s domain can be imple-
mented almost directly. In unfavorable environments we have no choice but
to add additional layers of refinement.

UML

As object-oriented methods became popular in the 1990s, there emerged
several distinctive styles of notation. These notations differed enough to
make tools incompatible and automated translation difficult; but the nota-
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tions did not capture fundamentally different concepts. The basic concepts
of class, object, and relationship were present in all of them, with only slight
notational differences. The differences were more in the additional views
and how the parts were integrated. They also differed somewhat more fun-
damentally in their approach to the design process and which portions they
chose to emphasize. For example, some of the object-oriented methods
emphasized front-end problem analysis through use-cases. Others were
more design oriented and focused on building information models after
there was a well-understood problem statement.

Because the profusion of notations was not helpful to the community,
there was some pressure to settle on a collective standard. This was done
partially through several of the leading “gurus” of the different methods, all
moving to work for one company (the Rational Corporation). The product
of their collaboration, and a large standards effort, is the Unified Modeling
Language11 (UML). Because UML has successfully incorporated most of the
best features of its roots, and has gained a fairly broad industry consensus,
it is increasingly popular. Probably the most significant complaint about the
UML is its complexity. It is certainly true that if you tried to model a system
using all the parts of the UML the resulting model would be quite complex.
But the content of the UML should not be confused with a process. A
designer is no more compelled to use all the parts of the UML than is a
writer compelled to use all the words in the English language. Of course, it
isn’t simple to figure out which parts should be used in any given situation,
and it can take fairly deep knowledge of the UML to know how to ignore
features.

The primary importance of UML is that it may lead to more broadly
accepted standardization of software and systems engineering notations. The
notations are fundamentally software-centric, but as the software fraction
(measured as percentage of development effort) makes up the majority of a
development effort, this will seem appropriate. The two viewpoints within
UML, use-cases and class-object models, most commonly discussed are the
two that are the most software-centric. There are several other views that
are more clearly systems oriented.

The use-case view within UML has two parts, the textual use-cases and
diagrams that show the relationships among use-cases and actors. The tex-
tual form of a use-case is not strictly defined. In general it is a narrative
listing of messages that pass between an “actor,” a system stakeholder, and
the system. Thus a use-case, in its pure form, follows the definition of the
systems boundary. The use-case diagram shows the relationships between
actors and use-cases, including linkages among use-cases.

A simple form for a textual use-case has four required parts and a group
of optional parts.* They are

* There are many different formats for use-cases in use. The forms described here are inspired
by various UML documents, and Dr. Kevin Kreitman in private communication.
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1. Title (preferably evocative)
2. Actors — A list
3. Purpose — What the actors accomplish through this use-case, why

the actors use the system
4. Dialog — A step-by-step sequence of messages exchanged across the

actor-system boundary. The use-case gives the normal sequence, al-
ternative sequences (from errors or other choices) can be integrated
into the use-case, given as different use-cases, or organized into the
optional section

5. Optional material — Some useful adjuncts include type (such as es-
sential, optional, phase X, etc.), an overview for a very complex use-
case, and alternative paths

UML uses class-object models very similar to those described in the OMT
section. The differences are primarily details of notation, such as the graphic
element used to indicate a particular type of relationship. There is also a
fairly complex set of textual notations for showing the components of the
classes (data and methods). For example, there are textual indications for
public, private, and virtual elements. The discussion of class-object notations
in the OMT section gives the flavor of how a model of the same sort would
work if written in UML.

UML does introduce some modeling elements not discussed to this point
and of high interest to system architects. On the behavioral side, the UML
defines sequence diagrams. A sequence diagram depicts both the pattern of
message-passing among the system’s objects, and the timing relationships.
The sequence diagram is useful both for specification and for diagnosis.
When the client has a complex legacy system with which the new system
must interface, or when the client’s problems are primarily expressed in
terms of deficiencies in a current system, the sequence diagram is a method
for visually presenting time relationships. This is often quite important in
real-time software-intensive systems.

Another avenue for standardization in which UML might assist is in
physical block diagrams. UML defines “deployment diagrams” to show how
software objects relate to physical computing nodes. The diagram style for
the nodes and their links could be enhanced suitably (as discussed with
models of form) to handle systems-level concerns. This is a possible refine-
ment in the next major revision to the UML, designated UML 2.0.

Performance integration: scheduling

One area of nonfunctional performance that is very important to software,
and for which there is large body of science, is timing and scheduling. Real-
time systems must perform their behaviors within a specified timeline. Abso-
lute deadlines produce “hard real-time systems.” More flexible deadlines
produce “soft real-time systems.” The question of whether or not a given
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software design will meet a set of deadlines has been extensively studied.*
To integrate these timing considerations with the design requires integration
of scheduling and scheduling analysis.

In spite of the extensive study, scheduling design is still at least partly
art. Theoretical results yield scheduling and performance bounds and asso-
ciated scheduling rules, but they can do so only for relatively simple systems.
When system functions execute interchangeably on parallel processors,
when run times are random, and when events requiring reaction occur
randomly, there are no deducible, provably optimal solutions. Some measure
of insight and heuristic guidance is needed to make the system both efficient
and robust.

Integrated models for manufacturing systems
The domain of manufacturing systems contains nice examples of integrated
models. The modeling method of Baudin12 integrates four modeling compo-
nents (data flow, data structure, physical manufacturing flow, and cash flow)
into an interconnected model of the manufacturing process. Baudin further
shows how this model can then be used to analyze production scheduling
under different algorithms. The four parts of the core model are:

1. A data flow model using the notations of DeMarco and state transition
models

2. A data model based on entity-relationship diagrams
3. A material flow model of the actual production process, the model of

physical form, using ASME and Japanese notations
4. A funds flow model

These parts, which mostly use the same component models familiar from
the previous discussion, form an integrated architect’s tool kit for the man-
ufacturing domain. They are shown in Figure 10.8. The data flow models
are in the same fashion as the requirements model of Hatley/Pirbhai. The
data model is more complex and uses basic object-oriented concepts. In the
material flow model, the progression of removal of abstraction is taken to a
logical conclusion. Because the physical architecture of manufacturing sys-
tems is restricted, the architecture model components are similarly restricted.
Baudin incorporates, in fact exploits, the restricted physical structure of
manufacturing systems by using a standardized notation for the physical or
form model.

Baudin further integrates domain-specific performance and system
models by considering the relationship to production planning in its several
forms (MRP-II, OPT, JIT). As he shows, these formalisms can be usefully

* Stankovic, J. A., Spuri, M., Di Natale, M., and Buttazzo, G. C., Implications of classical
scheduling results for real-time systems, IEEE Computer, p. 16, June 1995. This provides a good
tutorial introduction to the basic results and a guide to the literature.
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placed into context on the integrated models. In the terms used in Chapter
8, this is a form of performance model integration.

Integrated models for sociotechnical systems
On the surface, the modeling of sociotechnical systems is not greatly different
from other systems, but the deeper reality is quite different. The physical
structure of sociotechnical systems is the same as of other systems, though
it spans a considerable range of abstraction, from the concrete and steel of
transportation networks to the pure laws and policy of communication stan-
dards. But people and their behavior are inextricably part of sociotechnical
systems. Sociotechnical system models must deal with the wide diversity of
views and the tension between facts and perceptions as surely as they must
deal with the physics of the physical systems.

Physical system representation is the same as in other domains. A civil
transport system is modeled with transportation tools. A communications
network is modeled with communications tools. If part of the system is an
abstract set of laws or policies it can be modeled as proposed laws and
policies. The fact that part of the system is abstract does not prevent its
representation, but it does make understanding the interaction between the
representation and the surrounding environment difficult. In general, mod-
eling the physical component of sociotechnical systems does not present any
insurmountable intellectual challenges. The unique complexity is in the
interface to the humans who are components of the system, and in their joint
behavior.

Figure 10.8
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In purely technical systems the environment and the system interact,
but it is uncommon to ascribe intelligent, much less purposively hostile,
behavior to their environments.* But human systems constantly adapt. If an
intelligent transport system unclogs highways, people may move farther
away from work and re-clog the highways until a new equilibrium is
reached. A complete model of sociotechnical system behavior must include
the joint modeling of system and user behavior, including adaptive behavior
on the part of the users.

This joint behavioral modeling is one area where modeling tools are
lacking. The tools that are available fall into a few categories: econometrics,
experimental microeconomics and equilibrium theory, law and economics,
and general system dynamics. Other social science fields also provide guid-
ance, but not generally descriptive and predictive behavior.

Econometrics provides models of large-scale economic activity as
derived from past behavior. It is statistically based and usually operates by
trying to discover models in these data rather than imposing models on
them. In contrast, general system dynamics** builds dynamic models of
social behavior by analysis of what linkages should be present and then tests
their aggregated models against history. System dynamics attempts to find
large-scale behavioral patterns that are robust to the quantitative details of
the model internals. Econometrics tries to make better quantitative predic-
tions without having an avenue to abstract larger-scale structural behavior.

Experimental economics and equilibrium theory try to discover and
manipulate a population's behavior in markets through use of microeco-
nomic theory. As a real example, groups have applied these methods to
pricing strategies for pollution licenses. Instead of setting pollution regula-
tions, economists have argued that licenses to pollute should be auctioned.
This would provide control over the allowed pollution level (by the number
of licenses issued) and be economically efficient. This strategy has been
implemented in some markets and the strategies for conducting the auctions
were tested by experimental groups beforehand. The object is to produce an
auction system that results in stable equilibrium price for the licenses.

Law and economics is a branch of legal studies that applies micro- and
macroeconomic principles to the analysis of legal and policy issues. It
endeavors to assure economic efficiency in policies, and to find least cost
strategies to fulfill political goals. Although the concepts have gained fairly
wide acceptance, they are inherently limited to those policy areas where
market distribution is considered politically acceptable.

* See Rechtin, E., Systems Architecting, Creating & Building Complex Systems, Prentice-Hall, En-
glewood Cliffs, NJ, 1991, chap. 9.
** An introductory reference on system dynamics is Wolstenholme, E. F., System Enquiry: A
System Dynamics Approach, Wiley, Chichester, 1990, which explains the rationale, gives examples
of application, and references the more detailed writings.
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Conclusions
A variety of powerful integrated modeling methods already exist in large
domains. These methods exhibit, more or less explicitly, the progressions of
refinement and evaluation noted as the organizing principle of architecting.
In some domains, such as software, the models are very well organized,
cover a wide range of development projects, and include a full set of views.
However, even in these domains the models are not in very wide use and
have less than complete support from computer tools. In some domains,
such as sociotechnical systems, the models are much more abstract and
uncertain. But in these domains the abstraction of the models matches the
relative abstraction of the problems (purposes) and the systems built to fulfill
the purposes.

Exercises

1. For a system familiar to you, investigate the models commonly used
to architecturally define such systems. Do these models cover all
important views? How are the models integrated? Is it possible to
trace the interaction of issues from one model to another?

2. Build an integrated model of a system familiar to you, covering at
least three views. If the models in any view seem unsatisfactory, or
integration is lacking, investigate other models for those views to see
if they could be usefully applied.

3. Choose an implementation technology extensively used in a system
familiar to you (software, board-level digital electronics, microwaves,
or any other). What models are used to specify a system to be built?
That is, what are the equivalents of buildable blueprints in this tech-
nology? What issues would be involved in scaling those models up
one level of abstraction so they could be used to specify the system
before implementation design?

4. What models are used to specify systems (again, familiar to you) to
implementation designers? What transformations must be made on
those models to specify an implementation? How can the two levels
be better integrated?
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chapter eleven

Architecture frameworks 

Introduction
Architecture has become a popular term in systems and software circles.
There are now many “Architecture Frameworks,” “Architecture Process
Models,” and the like to be found in government and corporate documents.
The purpose of this book is not to provide a comprehensive tour of all of
these approaches. Any such tour would be out of date the day after it was
written, and most of it would be of little interest to most readers. Neverthe-
less, some review of community approaches is essential, especially those
which have advanced to official standards. The practices advocated by these
standards, for good or ill, have to be recognized. And we, the authors of this
book, need to compare and contrast the approach here with what is in the
standards.

The standards that concern architecture, and that have advanced to
official status, are primarily architecture description standards. These are
often referred to as Architecture Frameworks. Architecture frameworks are
standards for the description of architectures. Architecture frameworks are
analogous to blueprint standards or, more loosely, building codes. The anal-
ogy to building codes is very loose as much of what building codes define,
specific physical forms, is not what most architecture frameworks define. A
framework defines what products the architect must deliver (to the client or
to some other agency with authority) and how those products must be
constructed. The framework generally does not constrain the contents of any
of those products, although such constraints could be incorporated.

Architecture frameworks serve much the same purposes as blueprint
standards, although their developers have had additional purposes in mind
as well. It is hoped these standards will improve the quality of architecting
efforts by institutionalizing best practices and fostering communication
about architectures through standardizing languages. Standardized architec-
tural description languages may also facilitate architecture evaluation by
standardizing the elements that must be considered in the evaluation.
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Defining an architecture framework
To evaluate an architecture description framework we need to understand
its goals, its definition of “architectural level” (as opposed to other design
levels), and its organizing concepts. We treat each of these in turn, although
the description concepts (viewpoints and views) have largely been discussed
previously in Chapter 8, and are discussed in more detail in Appendix C.

Goals of the framework

Each group developing and promulgating a standard has asserted different
goals, but they generally fall into a few, common categories.

1. Codify best practices for architectural description and, by so doing,
improve the state of the practice

2. Ensure that the sponsors of the framework receive architectural in-
formation in the format they desire

3. Facilitate comparative evaluation of architectures through standard-
ization of their means of description

4. Improve the productivity of development teams by presenting basic
designs in a standard way

5. Improve interoperability of information systems by requiring that
interoperation critical elements be described, and be described in a
common way

The fairest way of evaluating different frameworks is against their own
goals. Of course, the goals of any given framework may or may not match
the goals of a project or adopting organization. To the extent they don’t
match it is poor choice, perhaps a poor “architectural” choice, on the part
of the adopters or the framework developers.

Understanding “architectural level”

An architecture framework specifies information about architectures, as
opposed to about detailed design, program management, or some other set
of concerns. Thus, a framework needs to distinguish what information is
“architectural” as opposed to something else. In this book the separation is
connected to purpose. Information is architectural if it is needed to resolve
the purposes of the client. The distinction is pragmatic, not theoretical. More-
over, we recognize that architecting and engineering are on a continuum of
practice and sharp distinctions cannot be drawn. Other frameworks take
different positions.
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Organization of an architecture description framework

The architecture frameworks described here use a few basic concepts, though
they use them differently and sometimes with different terminology. All of
them organize architecture descriptions into collections of related models.
We call a collection of logically related models a “view,” as do several of the
frameworks. Which views they choose and which modeling languages they
require for specifying a view are different.

All of the frameworks have views that capture the high-level design of
the system. High-level design means the physical implementation compo-
nents (whether hardware or software) at the upper parts of a system/sub-
system hierarchy.

All of the frameworks make some effort to put the client/user/customer
in the architecture description, although they do so to different degrees. Some
of the frameworks also explicitly pull the sponsor of the architecture (often
not the user or customer) into the description. The more architecture descrip-
tion languages for software are academically oriented, usually the more
strongly they are biased toward the design of the implementation.

The frameworks differ in how strongly they address consistency among
the views. Some are informal and make no explicit provision, while others
have built consistency checks into their choice of language.

Current architecture frameworks
Several standards explicitly labeled architecture frameworks have emerged
in the 1990s. These frameworks are targeted at computer-based and infor-
mation technology systems rather than more general systems. The three
standards we consider here are the U. S. Department of Defense (DoD) C4ISR
architecture framework, the International Standards Organization’s RM-
ODP standard, and the IEEE’s P1471 Recommended Practice for Architec-
tural Description. All three use the basic concepts given above, but take quite
different approaches to the formalization and rigor required. We also discuss,
very briefly, commercial information technology frameworks.

U.S. DoD C4ISR

In the early 1990s the DoD undertook the development of an architecture
framework for Command, Control, Communications, Computing, Intelli-
gence, Surveillance, and Reconnaissance (C4ISR) systems. The stated goal
for this project was to improve interoperability across commands, services,
and agencies by standardizing how architectures of C4ISR systems are rep-
resented. It also became a response to U. S. Congressional requirements for
reform in how information technology systems are acquired.

The Architecture Working Group (AWG) published a version 1.0 of the
framework in June 1996. This was followed by a version 2.0 document in
December 1997. The version 2.0 document was published and is available
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through the U.S. DoD World Wide Web sites. The 2.0 framework requires
that the architecture description be organized into summary information and
three “architecture views.” The three views are called the Operational Archi-
tecture View, the System Architecture View, and the Technical Architecture
View. These are often contracted in discussion to the Operational Architec-
ture, the System Architecture, and the Technical Architecture. Speaking of
the “operational view of the architecture” would really be more in line with
the notion of view and more consistent with the C4ISR Framework Technol-
ogy. The version 2.0 document is commonly referred to as the C4ISR Archi-
tecture Framework (CAF).

Each view within the framework is composed of required (called “essen-
tial”) and optional elements. A conformant description is obliged to provide
all of the essential elements, and may pick from the optional elements as
seen fit by the architects. Each of the essential and optional elements is a
modeling method.

The CAF is a blueprint standard in that it defines how to represent a
system’s architecture, but it does not restrict the contents of the architecture.
In practice, however, content restrictions have appeared with the CAF. The
U.S. DoD has also sponsored the development of the Joint Technical Archi-
tecture (JTA). The JTA is a particular instance of a CAF technical architecture
view. The JTA chooses particular standards. It has been current policy that
all DoD systems should be compliant with the JTA, hence their technical
architecture view is constrained to be that of the JTA. However, the JTA has
also been extended with various annexes that cover specific military
domains. There is also, at the time of this writing, an effort to develop a Joint
Operational Architecture (JOA) that would further constrain the contents of
a CAF conformant description.

Summary information
The required summary information is denoted AV-1 Overview and Summary
Information and AV-2 Integrated Dictionary. Both are simple, textual objects.
The first is information on scope, purpose, intended users, findings, etc. The
second is definitions of all terms used in the description.

Operational view
The operational view shows how military operations are carried out through
the exchange of information. It is defined as a description of task and activ-
ities, operation elements, and information flows integrated to accomplish
support military operations. It has three required elements and six optional
elements. Each of the elements is a model written in a particular modeling
language. None of the languages is defined very formally. Some are entirely
informal, as in the required High Level Concept Graphic (OV-1), while others
(such as the Logical Data Model, OV-7) suggest the use of more formalized
notations, though they do not require it. The essential products are
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High-Level Operational Concept Graphic (OV-1): A relatively unstruc-
tured graphical description of all aspects of the systems operation,
including organizations, missions, geographic configuration, and con-
nectivity. The rules for composing this are loose with no real require-
ments.

Operational Node Connectivity Description (OV-2): Defines the oper-
ational nodes, and activities at each node, and the information flows
between nodes. The rules for composing this are more structured than
for OV-1, but are still loose.

Operational Information Exchange Matrix (OV-3): A matrix description
of the information flows among nodes. This is normally done as an
augmented form of data dictionary table.

The optional products are

Command Relationships Model (OV-4): A modestly structured model
of command relationships.

Activity Model (OV-5): Very similar to a data flow diagram for opera-
tional activities.

Operational Rules Model (OV-6a): Defines the sequencing and timing
of activities and information exchange through textual rules.

Operational State Transition Model (OV-6b): Defines the sequencing
and timing of activities and information exchange through a state
transition model, which is usually quite formal.

Operational Event/Trace Description (OV-6a): Defines the sequencing
and timing of activities and information exchange through scenarios
or use-cases. This is behavioral specification by example, as discussed
in Chapter 8.

Logical Data Model (OV-7): Usually a class-object model or other type
of relational data model. No specific notation is required, but most of
the popular notations used are fairly formal. Defines the data require-
ments and relationships.

System view
The system view is defined as a description, including graphics, of a system
and interconnections providing for, and supporting, warfighting functions.
The system view is described with one essential product and twelve optional
products. As with the operational view, these modeling methods span a wide
range of methods and concerns. The one required element is

System Interface Description (SV-1): This model identifies the system’s
physical nodes and their interconnections. It is similar to an architec-
ture interconnection diagram in the Hatley/Pirbhai sense as described
in Chapters 8 and 10. A graphic representation method is called out
in the CAF, but is not formally defined.
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The twelve optional supporting products are mostly concerned with
more detailed descriptions of system-level data interchange or operation.
However, some of the supporting products wander very far afield from these
concerns. For example, the System Technology Forecast (SV-9) is a tabular
compilation of the technologies expected to be available, broken out by time
frame, for the system.

Technical view
The technical view is defined as a minimal set of rules governing the arrange-
ment, interaction, and interdependence of system parts or elements, whose
purpose is to ensure that a conformant system satisfies a specified set of
requirements. It has two elements, one required and one optional or sup-
porting. 

The required element is

Technical Architecture Profile (TV-1): A listing of the standards man-
datory for the system being described. In most applications of the
CAF the technical architecture comes from the JTA, a standards profile
intended for all U. S. DoD systems.

The supporting element is the Standards Technology Forecast (TV-2), a
projection of how standards and products compliant with standards will
emerge during the time the system is developed and operated.

Evaluation of the C4ISR framework
The CAF has only been published for a few years and is only beginning to
generate a body of experience. One clear issue is that it is often being used
for purposes for which it was not intended. Recall that the purpose was
primarily to facilitate interoperability through commonality of description.
The goals, at least as discussed in the CAF documentation, did not include
defining a standard that was complete with respect to an acquirer’s concerns.
For example, there is no place in the views for performance models, cost
models, or other management models. Yet all of those are clearly necessary
when the client is an acquirer and must make acquisition decisions.

Likewise, the CAF does not contain the elements necessary to cover the
concerns of a builder of, for example, software-intensive systems. We have
a fairly good understanding of best practices in software architecture descrip-
tion, and those practices are not mirrored in the CAF; but the purpose of the
CAF is not to provide complete architecture “blueprints” for building.

Just as an architecture must be fit for purpose, so must an architecture
description framework. If the CAF is misused, the fault is much more in the
misuser than in the framework. Nevertheless, it can be cited as a weakness
of the CAF that its parts are very loosely related. Very disparate concerns
and models are lumped together into the views. Neither intra-view nor inter-
view consistency is addressed at all. The individual models are so loosely
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defined, especially in some of the required elements, that ostensibly compli-
ant descriptions can be produced that will not come close to guaranteeing
interoperability. Because the CAF adopts such a neutral stance to method-
ology, it cannot enforce stronger consistency and completeness checks. It is
probably not possible to strengthen consistency and completeness properties
without adopting much more formal modeling methods, which would neg-
atively impact ongoing programs on which the CAF might be mandated.

ISO RM-ODP

The International Standards Organization (ISO) has also developed an archi-
tecture description framework known as Reference Model for Open Distrib-
uted Processing (RM-ODP).1 As the name implies, RM-ODP is computation
and software-centric. It addresses open distributed processing that is multi-
vendor, multiorganization, heterogeneous computing systems whose pro-
cessing nodes are spatially distributed. As defined in RM-ODP, a distributed
system is generally characterized by one which is spatially distributed, does
not have a global state or clock, may have individual node failures, and
operates concurrently.

The scope of RM-ODP is larger than just architectural description. RM-
ODP makes extensive normative statements about how systems should be
described, but also goes on to specify functions they should provide, and
structuring rules to provide those functions. The architecture concerns of
RM-ODP include both description (through viewpoints) and the provision
of what are considered critical functions, called “transparencies,” in the RM-
ODP model.

The RM-ODP defines*:

1. A division of an ODP system specification into viewpoints in order
to simplify the description of complex systems

2. A set of general concepts for the expression of those viewpoint spec-
ifications

3. A model for an infrastructure supporting, through the provision of
distribution transparencies, the general concepts it offers as specifica-
tion tools

4. Principles for assessing conformance for ODP systems

This is certainly larger than just description of architectures. Points 1
and 2 of RM-ODP are our concern here. RM-ODP is much more strongly
normative than the other architecture frameworks discussed in this chapter.
It takes a more normative approach both because of the inclinations of the
authors (and their beliefs about best practices) and because the domain of
application is narrower. RM-ODP applies to a particular class of computing

* ISO/IEC 10746-1: 1995 DIS (E), p. 8.

2000 CRC Press LLC



systems (albeit a broad class) and it seeks to be both a consistent and com-
plete approach to describing such systems.

The heart of RM-ODP regarding descriptions is its five normative view-
points. RM-ODP uses viewpoint to mean essentially what view means here,
although it also carries the meaning of a generic specification method to be
applied to any system. The RM-ODP notion of viewpoint is really a mixture
of the language specification, the concerns covered, and the actual model
instances for a particular system. The five ODP viewpoints are enterprise,
information, computational, engineering, and technology. ODP adopts the
notion that each viewpoint is a “projection” of the system’s whole specifi-
cation onto some set of concerns (using a specific language). The five view-
points are chosen to be complete with respect to the concerns assumed to
be relevant for an open distributed processing system. The definitions of the
five viewpoints are*

1. An enterprise specification of an ODP system is a model of the system
and the environment with which the system interacts. It covers the
role of the system in the business, and the human user roles and
business policies related to the system. The enterprise viewpoint is a
viewpoint on the system and its environment that focuses on the
purpose, scope, and policies of the system.

2. The information specification of an ODP system is a model of the
information that it holds, and of the information processing that it
carries out. The information model is extracted from the individual
components and provides a consistent common view which can be
referenced by the specifications of information sources and sinks, and
the information flows between them. The information viewpoint on
the system and its environment focuses on the semantics of the infor-
mation and information processing performed.

3. The computational specification of an ODP system is a model of the
system in terms of the individual, logical components which are
sources and sinks of information. Using the computational language,
computational specifications can express the requirements of the full
range of distributed systems, providing the maximum potential for
portability and interworking, and enabling the definition of con-
straints on distribution while not specifying the detailed mechanisms
involved. The computational viewpoint is a viewpoint on the system
and its environment that enables distribution through functional de-
composition of the system into objects which interact at interfaces.

4. The engineering specification of an ODP system defines a networked
computing infrastructure that supports the system structure defined
in the computational specification and provides the distribution trans-
parencies that it identifies. It describes mechanisms corresponding to
the elements of the programming model, effectively defining an ab-

* ISO/IEC 10746-1: 1995 DIS (E), pp. 8-9, 16.
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stract machine that can carry out the computational actions and the
provision of the various transparencies needed to support distribu-
tion. The engineering viewpoint is a viewpoint on the system and its
environment that focuses on the mechanisms and functions required
to support distributed interaction between objects in the system.

5. The technology specification defines how a system is structured in
terms of hardware and software components. The technology view-
point is a viewpoint on the system and its environment that focuses
on the choice of technology in that system.

Each viewpoint has a language associated with it and defined in the RM-
ODP standard. The language specification in the standard is less specific
than a typical programming language. The language specification consists
of the definitions of the terms used to compose the language and constraints
on constructing statements. All terms and constructions are in-built on object
modeling concepts. The RM-ODP standard uses OMT conventions, although
they could as easily be transferred to UML. Because RM-ODP is a component
of the Object Management Group (OMG) of standards (UML is also a prom-
inent component), such a transfer is already under way. ISO/IEC 10746-4
has mappings between the viewpoint language concepts and mathematically
based formal languages from computer science.

RM-ODP recognizes the problem of inter-view and inter-view consis-
tency. A conformant description must perform a number of cross-view
checks for consistency. These checks are not a true guarantee, and the models
involved don’t have a precise notion of consistency built in, but the checks
serve as an explicit attempt to look for inconsistencies.

Proprietary and semi-open information technology standards

Architecture has been widely addressed through proprietary and semi-open
standards in information technology. Many firms have architectural stan-
dards, and many have developed their own description standards, typically
as part of a development process standardization activity. The architectural
description standards are tied to making specific go-ahead decisions about
system development. Standardization of description products helps make
those go-ahead decisions more consistent and facilitates process standard-
ization.

One of the more widely known architecture description frameworks in
information technology is usually called the Zachman framework, after the
name of the author. The Zachman framework is not fixed as it has evolved
with Zachman’s writings. There are a number of similarities between the
various Zachman frameworks and the RM-ODP standard as some of Zach-
man’s early work popularized some notions of viewpoints and viewpoint
languages. More recent published works by Zachman have added many
more views than five, and have particularly emphasized the enterprise and
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business management aspects of choosing information technology architec-
tures.

IEEE 1471

In April 1995 the IEEE Software Engineering Standards Committee (SESC)
convened an Architecture Planning Group (APG) to study the development
of an architecture standard for software-intensive systems. After publication
of their report, the APG upgraded to the Architecture Working Group and
was charged with the development of a Recommended Practice for archi-
tectural description — a particular type of standard. A Recommended Prac-
tice is one form of standard commonly used for relatively immature fields
as it provides more general guidance rather than normative requirements.
After extended debate and community consensus-building, a Recommended
Practice for architecture description was published.*

The 1471 project was intended to codify the areas of community consen-
sus on architecture description. Originally, it was envisioned that the stan-
dard would codify the notion of view and prescribe the use of particular
views. In the end, consensus only developed around a framework of views
and viewpoints and an organizing structure for architecture descriptions,
but there was no prescription of any particular views. As a recommended
practice it is assumed that community experience will eventually lead to
greater detail within the standard.

P1471 concepts
Because the ontology of P1471 is independent of a specific framework of
views and viewpoints, its ideas have been threaded into the discussion of
this book. P1471 codifies the structure of an architecture description and the
definitions of its parts. The terminology of P1471 is shown in Figure 11.1.
The diagram is written in UML, but it can be easily interpreted, even without
knowledge of UML. In the P1471 ontology every system has one architecture.
That architecture can have several architecture descriptions. This expresses
the idea that an architecture is a conceptual property of a thing, while an
architecture description is a representation of the conceptual object. Several
mutually consistent representations of a thing can exist so we need not
specify that there be a single representation. P1471 does not make a distinc-
tion between types of system, so the relationship of architecture and archi-
tecture description could hold for an individual system, a family of systems,
a system of systems, or a subsystem.

Returning to Figure 11.1, an architecture description is composed of
stakeholders, concerns, viewpoints, views, and models. Stakeholders have
concerns. Viewpoints cover stakeholders and concerns by their choice of
language with which to represent the system. Views are groups of models

* IEEE P1471 Recommended Practice for Architecture Description, 2000. P1471 is part of the
Computer Society’s software engineering standards set.
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which must conform to exactly one viewpoint by using its language and
rules.

Viewpoints may be drawn from a viewpoint library. A viewpoint library
is not required by P1471, but it is expected in organizations that frequently
develop architectural descriptions.

P1471 makes an explicit distinction between the concepts of viewpoint
and view, although they are combined in the CAF and RM-ODP. If our goal
is simply to write an architecture description, or to form a single standard,
it is not necessary to separate the concepts. It is necessary to separate the
concepts in P1471 because P1471 may be used to form many standards.

Figure 11.1
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Viewpoints are the vehicle for forming a standard. Indeed, viewpoints may
be placed into a library to be drawn from at the discretion of the architect
and the specific stakeholders involved in a particular project. Thus, these
organizing elements must be separately named and defined to allow them
to be separately assembled for the needs of different sets of clients.

The viewpoints of RM-ODP are examples of P1471 compliant view-
points. The only distinction between the viewpoint concept in RM-ODP and
P1471 is that the RM-ODP version combines the abstraction (the P1471
viewpoint) and the actual instance of a representation of a particular system
(the P1471 view).

P1471 normative requirements
The normative requirements of P1471 are limited, particularly compared to
RM-ODP, and even the CAF. An architecture description conformant to
P14712 must meet the following main requirements:

1. The stakeholders identified must include users, acquirers, developers,
and maintainers of the system.

2. The architecture description must define its viewpoints, with some
specific elements required.

3. The system’s architecture must be documented in a set of views in
one-to-one correspondence with the selected viewpoints, and each
view must be conformant to the requirements of its associated view-
point.

4. The architecture description document must include any known inter-
view inconsistencies and a rationale for the selection of the described
architecture.

There are a variety of other relatively minor normative requirements,
along with various recommendations. Many of these are to make P1471
consistent with other IEEE software engineering standards, notably the over-
arching software engineering standard 12207.

Research directions
The current state of the art and practice in architecture description leaves
much work undone. As the RM-ODP example shows, the basic architectural
concepts of viewpoint, view, stakeholder, and concern can be extensively
refined and tied to modeling formalisms if the domain of application is
narrowed. A cost is the intellectual complexity of the resulting methods. RM-
ODP is a complex standard. Its conceptual makeup is not complex in com-
parison to other areas in computer science, but it is quite complex compared
to common practice in information technology. There may be strong benefits
in mastering the complexity, but it acts as a barrier to the adoption of this
technology. To make it more widely used we need better tools and better
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explanation and training mechanisms to pass these ideas on to the profes-
sional community.

As we move to more general systems, the range of formalized models
drops off dramatically. It seems very unlikely that we can develop a really
general architecture framework that will simultaneously be formalizable. It
seems more likely that we must continue to work up from the engineering
disciplines to create more general notations. One problem will be dealing
with the disjunction between models common in the hardware (and some
of the systems engineering) world and those coming from computer science
and software. The hardware models are typically performance-centric and
physics based. They work from physical objects. The computer science mod-
els are now commonly based on object-orientation and encapsulation of
functionality within data models. It is not obvious how these will be recon-
ciled, or to what extent it will be necessary. It may be a better approach to
leave the modeling techniques as they are — taking the modeling techniques
as they have been validated within the engineering disciplines. The higher-
level challenge will then be to develop inter-view consistency checking tech-
niques that don’t require the disciplinary modeling methods to be altered,
instead of working with them as they are.

Conclusions
The problem of blueprint standards for complex systems architectures has
yielded a number of prototypical architecture frameworks. None of them is
an ideal solution, but all contain important ideas. The architect faced with
a normative requirement to use one of the frameworks must keep in mind
their limitations and the architect’s core role. The architect’s core role is to
assist the system’s client in making the key technical decisions, particularly
with which system concept to go on construction. This places a premium on
models and methods that communicate effectively with the client, regardless
of their correspondence (or lack thereof) to engineering models. Only as the
architect’s role evolves to transitioning the system to development and main-
taining conceptual integrity during development does that correspondence
to engineering methods become foremost.

Notes and references
1. ISO/IEC JTC1/SC21/WG7 Reference Model for Open Distributed Processing

officially titled ITU-T X.901 ISO/IEC 10746 Reference Model, Parts 1-4.
2. The complete details are in the standard itself, IEEE P1471 Recommended

Practice for Architectural Description, issued in 2000.
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Part four

The systems architecting 
profession

The first three parts of this book have been about systems architecting as an
activity or as a role in systems development. This part is about systems
architecting as a profession; that is, as a recognized vocation in a specialized
field. Two factors are addressed here. The first, the political process,* is
important because it interacts strongly with the architecting process, directly
affecting the missions and designs of large-scale, complex systems. The
second, the professionalization of systems architecting, is important because
it affects how the government, industry, and academia perceive systems
architects as a group.

Chapter 12 is based on a course originated and taught at the University
of Southern California by Dr. Brenda Forman of USC and the Lockheed
Martin Corporation. The chapter describes the political process of the Amer-
ican government and the heuristics that characterize it. The federal process,
instead of company politics or executive decision making,** was chosen for
the course and for this book on architecting for three reasons.

First, federal governments are major sponsors and clients of complex
systems and their development. Second, the American federal political pro-
cess is a well-documented, readily available open source for case studies to
support the heuristics given here. And third, the process is assumed by far
too many technologists to be uninformed, unprofessional, and self-serving.
Nothing could be worse, less true, nor more damaging to a publicly sup-
ported system and its creators than acting under such assumptions. In actu-
ality, the political process is the properly constituted and legal mechanism
by which the general public expresses its judgments on the value to it of the
goods and services that it needs. The fact that the process is time-consuming,

* By “political process,” it is meant the art and science of government, especially the process
by which it acquires large-scale, complex systems.
** Company politics were felt to be too company-specific, too little documented, and too
arguable for credible heuristics. Executive decisions are the province of decision theory and are
best considered in that context.
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messy, litigious, not always fair to all, and certainly not always logical in a
technical sense, is far more a consequence of inherent conflicts of interests
and values of the general public than of base motives or intrigue of its
representatives in government.

The point that has been made many times in this book is that value
judgments must be made by the client, the individual or authority who pays
the bills, and not by the architect. For public services in representative dem-
ocratic countries, that client is represented by the legislative, and occasionally
the judicial, branch of the government.* Chapter 12 states a number of
heuristics, the “facts of life,” if you will, describing how that client operates.
In the political domain, those rules are as strong as any in the engineering
world. The architect should treat them with at least as much respect as any
engineering principle or heuristic. For example, one of the facts of life states: 

The best engineering solutions are not necessarily
the best political solutions. 

Ignoring such a fact is as great a risk as ignoring a principle of mathe-
matics or physics — one can make the wrong moves and get the wrong
answers.

Chapter 13 addresses the challenge in the Preface to this book to profes-
sionalize the field; that is, to establish it as a profession** recognized by its
peers and clients. In university terms, this means at least a graduate-level
degree, specialized education, successful graduates, peer-reviewed publica-
tions, and university-level research. In industry terms, it means the existence
of acknowledged experts and specialized techniques. Dr. Elliott Axelband***
reports on progress toward such professionalization by tracing the evolution
of systems standards toward architectural guidelines, by describing archi-
tecture-related programs in the universities, and by indicating professional
societies and publications in the field. Axelband concludes the book with an
assessment of the profession and its likely future.

* In the U.S., the executive branch implements the value judgments made by the Congress unless
the Congress expressly delegates certain ones to the executive branch.
** “Any occupation or vocation requiring training in the liberal arts or the sciences and advanced
study in a specialized field.” Webster’s II New Riverside University Dictionary, Riverside Publishing
Company, Boston, MA, 1984, p. 939.
*** Associate Dean, School of Engineering, University of Southern California and the director
of the Systems Architecting and Engineering program. Dr. Axelband previously was an exec-
utive of the Hughes Aircraft Company until his retirement in early 1994.
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chapter twelve

The political process and 
systems architecting*

Brenda Forman, Ph.D.

Introduction: the political challenge
The process of systems architecting requires two things above all others:
value judgments by the client and technical choices by the architect. The
political process is the way that the general public, when it is the end client,
expresses its value judgments. High-tech, high-budget, high-visibility, pub-
licly supported programs are therefore far more than engineering challenges;
they are political challenges of the first magnitude. A program may have the
technological potential of producing the most revolutionary weapon system
since gunpowder, elegantly engineered and technologically superb, but if it
is to have any real life expectancy or even birth, its managers must take its
political element as seriously as any other element. It is not only possible
but likely that the political process will not only drive such design factors
as safety, security, produceability, quantity, and reliability, but may even
influence the choice of technologies to be employed. The bottom line is: 

If the politics don’t fly, the system never will.

* This chapter is based on a course originated and taught at the University of Southern California
by Dr. Forman, now with Lockheed Martin Corporation in Washington, D.C. As indicated in
the Introduction to Part Four, the political process of the American federal government was
chosen for the course for three reasons: it is the process by which the general public expresses
its value judgments as a customer, it is well-documented and publicized, and it is seriously
misunderstood by the engineering community, to the detriment of effective architecting.
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Politics as a design factor
Politics is a determining design factor in today’s high-tech engineering. Its
rules and variables must be understood as clearly as stress analysis, elec-
tronics, or support requirements. However, its rules differ profoundly from
those of Aristotelian logic. Its many variables can be bewildering in their
complexity and often downright orneriness.

In addition to the formal political institutions of Congress and the White
House, a program must deal with a political process that includes inter-
agency rivalries, intra-agency tensions, dozens of lobbying groups, influen-
tial external technical review groups, powerful individuals both inside and
outside of government, and, always and everywhere, the media.

These groups, organizations, institutions, and individuals interact in a
process of great complexity. This confusing and at times chaotic activity,
however, determines the budgetary funding levels that either enable the
engineering design process to go forward or threatens outright concellation.
More often of late, it directly affects the design in the form of detailed budget
allocations, assignments of work, environmental impact statements, and the
reporting risks or threats.

Understanding the political process and dealing successfully with it is
therefore crucial to program success.

Example: Perhaps no major program has seen as many
cuts, stretchouts, reviews, mandated designs, and risk
of cancellation as the planetary exploration program
of the 1970s and 1980s. Much of the cause was the need
to fund the much larger Shuttle program. For more
than a decade there were no planetary launches and
virtually no new starts. From year to year, changes
were mandated in spacecraft design, the launch vehi-
cles to be used, and even the planets and asteroids to
be explored. The collateral damage to the planetary
program of the Shuttle Challenger loss was enormous
in delayed opportunities, redesigns, and wasted ener-
gy. Yet, the program was so engineered that it still
produced a long series of dramatic successes, widely
publicized and applauded, using spacecraft designed
and launched many years before. 

Begin by understanding that power is very widely distributed in Washington.
There is no single, clear-cut locus of authority to which to turn for support
for long-term, expensive programs. Instead, support must be continuously
and repeatedly generated from widely varying groups, each of which may
perceive the program’s expected benefits in quite different ways, and many
of whose interests may diverge rather sharply when the pressure is on.
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Example: The nation’s space program is confronted
with extraordinary tensions, none of which are resolv-
able by any single authority, agency, branch, or indi-
vidual. There are tensions between civilian and
military, between science and application, between
manned and unmanned flight, between complete
openness and the tightest security, between the mili-
tary services, between NASA centers, and between the
commercial and government sectors, to name a few.
Typical of the contested issues are launch vehicle de-
velopment, acquisition, and use; allocations of work to
different sections of the country and the rest of the
world; and the future direction of every program. No
one, anywhere, has sufficient authority to resolve any
of these tensions and issues, much less to resolve them
all simultaneously. 

This broad dispersion of power repeatedly confuses anyone expecting
that somebody will really be in charge. Rather, the opposite is true — any-
thing that happens in Washington is the result of dozens of political vectors,
all pulling in different directions. Everything is the product of maneuver
and compromise. When those fail, the result is policy paralysis, and, all too
possibly, program cancellation by default or failure to act.

There are no clear-cut chains of command in the government. It is noth-
ing like the military, or even a corporation. The process gets even more
complicated because power does not stay put in Washington. Power relation-
ships are constantly changing, sometimes quietly and gradually, at other
times suddenly, under the impact of a major election or a domestic or inter-
national crisis. These shifts can alter the policy agenda, and therefore funding
priorities, abruptly and with little advance warning. A prime example is the
ever-changing contest over future defense spending levels in the wake of
the welcomed end of the Cold War.

The entire process is far better understood in dynamic than in static
terms. There is a continuous ebb and flow of power and influence between
the Congress and the White House, among and within the rival agencies,
and among ambitious individuals. And through it all, everyone is playing
to the media, particularly to television, in efforts to change public percep-
tions, value judgments, and support.

The first skill to master
To deal effectively with this process, the first skill to master is the ability to think
in political terms. And that requires understanding that the political process
functions in terms of an entirely different logic system than the one in which
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scientists, engineers, and military officers are trained. Washington functions
in terms of the logic of politics. It is a system every bit as rigorous in its way
as any other, but its premises and rules are profoundly different. It will
therefore repeatedly arrive at conclusions quite different from those of engineering
logic, but based on the same data.

Scientists and engineers are trained to marshal their facts and proceed
from them to proof. For them, proof is a matter of firm assumptions, accurate
data, and logical deduction. Political thinking is structured entirely differ-
ently. It depends not on logical proof but on past experiences, negotiation,
compromise, and perceptions. Proof is a matter of “having the votes.” If a
majority of votes can be mustered in Congress to pass a program budget,
then, by definition, the program has been judged to be worthy, useful, and
beneficial to the nation. If the program cannot, then no matter what its
technological merits, the program will lose out to other programs which can.

Mustering the votes depends only in part on engineering or technolog-
ical merit. These are always important, but getting the votes frequently
depends as much or even more on a quite different value judgment — the
program’s benefits in terms of jobs and revenues among the Congressional
districts.

Example: After the Lockheed Corporation won
NASA’s Advanced Solid Rocket Motor (ASRM) pro-
gram, the program found strong support in the Con-
gress because Lockheed located its plant in the
Mississippi district of the then Chairman of the House
Appropriations Committee. Lockheed’s factory was
only partially built when the Chairman suffered a crip-
pling stroke and was forced to retire from his Congres-
sional duties. Shortly thereafter, the Congress, no
longer obliged to the Chairman, reevaluated and then
canceled the program.

In addition to the highest engineering skills, therefore, the successful
architect-engineer must have at least a basic understanding of this political
process. The alternative is to be repeatedly blindsided by political events
and, worse yet, not even to comprehend why.

Heuristics in the political process: “the facts of life”
Following are some basic concepts for navigating these rocky rapids: The
Facts of Life. They are often unpleasant for the dedicated engineer, but they
are perilous to ignore. Understanding them, on the other hand, will go far
in helping anticipate problems and cope more effectively with them. They
are as follows and will be discussed in turn.
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• Politics, not technology, sets the limits of what technology is allowed
to achieve.

• Cost rules.
• A strong, coherent constituency is essential.
• Technical problems become political problems.
• The best engineering solutions are not necessarily the best political

solutions.

Fact of life # 1

Politics, not technology, sets the limits of what technology is allowed to
achieve.

If funding is unavailable for it, any program will die, and getting the
funding — not to mention keeping it over time — is a political undertaking.
Furthermore, funding — or rather, the lack of it — sets limits that are
considerably narrower than what our technological and engineering capa-
bilities could accomplish in a world without budgetary constraints. Our
technological reach increasingly exceeds our budgetary grasp. This can be intensely
frustrating to the creative engineer working on a good and promising pro-
gram.

Example: The space station program can trace its ori-
gins to the mid-1950s. By the early 1960s it was a pre-
ferred way station for traveling to and from the moon.
But when, for reasons of launch vehicle size and sched-
ule, the Apollo program chose a flight profile that by-
passed any space station and elected instead a direct
flight to lunar orbit, the space station concept went into
limbo until the Apollo had successfully accomplished
its mission. The question then was, what next in
manned spaceflight? A favored concept was a manned
space station as a waypoint to the moon and planets,
built and supported by a shuttle vehicle to and from
orbit. Technologically, the concept was feasible; some
argued that it was easier than the lunar mission. Con-
gress balked. The President was otherwise occupied.
Finally, in 1972, the Shuttle was born as an overprom-
ised, underbudgeted fleet, without a space station to
serve. Architecturally speaking, major commitments
and decisions were made before feasibility and desir-
ability had been brought together in a consistent
whole.
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Fact of life #2

Cost rules.
High technology gets more expensive by the year. As a result, the only

pockets deep enough to afford it are increasingly the government’s.* The
fundamental equation to remember is Money = Politics. While reviews and
hearings will spend much time on presumably technical issues, the funda-
mental and absolutely determining consideration is always affordability; and
affordability is decided by whichever side has the most votes.

Funding won in one year, moreover, does not stay won. Instead, it must
be fought for afresh every year. With exceedingly few exceptions, no program
in the entire federal budget is funded for more than one year at a time. Each
and every year is therefore a new struggle to head off attackers who want
the program’s money spent somewhere else, to rally constituents, to per-
suade the waverers, and, if possible, to add new supporters. 

This is an intense, continuous, and demanding process requiring huge
amounts of time and energy. And after one year’s budget is finally passed,
the process starts all over again. There is always next year. Keeping a pro-
gram “sold,” in short, is a continuous political exercise, and like the heroine
in the old movie serial, The Perils of Pauline, some programs at the ragged
edge will have to be rescued from sudden death on a regular basis. Rescue,
if and when, may be only partial — not every feature can or will be sustained.
If one of the lost features is a system function, the end may be near.

Example: After the Shuttle had become operational,
the question again was, what next in manned space-
flight? Although a modestly capable space station had
been successfully launched by a Saturn launch vehicle,
the space station program had otherwise been shelved
once the Shuttle began its resource-consuming devel-
opment. With developmental skill again available, the
space station concept was again brought forward.
However, order-of-magnitude life-cycle cost estimates
of the proposed program placed the cost at approxi-
mately that of the Apollo, which in 1990-decade dollars
would have been about $100 billion — clearly too
much for the size of the constituency it could com-
mand. The result has been an almost interminable se-
ries of designs and redesigns, all unaffordable as
judged by Congressional votes. Even more serious, the
cost requirement has resulted in a spiraling loss of

* The economic expansion through the end of the 1990s sets an interesting counterpoint. The
government is less and less able to influence technology in certain areas, for example, comput-
ing, simply because the commercial market has become so large relative to the federal market.
Similarly, some of the most ambitious space and launch ventures in the 1990s have been
privately funded.
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system functions, users, and supporters. Microgravity
experiments, drug testing, on-board repair of on-orbit
satellites, zero-g manufacturing, optical telescopes, an-
imal experiments, military research and development
— one after another had to be reduced to the point of
lack of interest by potential users. A clearly implied
initial purpose of the space station, to build one be-
cause the Soviet Union had one, was finally put to rest
with the U.S. government’s decision to bring Russia
into a joint program with the U.S., Japan, Canada, and
the European Space Agency. Another space station re-
design (and probably a new launch program design)
is likely; however, the uncertainty level in the program
remains high, complicating that redesign. One appar-
ent certainty: the U.S. Congress has made the value
judgment that a yearly cap of U.S. $2.1 billion is all
that a space station program is worth. The design must
comply or risk cancellation. Cost rules.

Fact of life #3

A strong, coherent constituency is essential.
No program ever gets funded solely, or even primarily, on the basis of

its technological merit or its engineering elegance. By and large, the Congress
is not concerned with its technological or engineering content (unless, of
course, those run into problems — see Fact of Life #4). Instead, program
funding depends directly on the strength and staying power of its support-
ers, i.e., its constituency.

Constituents support programs for any number of reasons, from the
concrete to the idealistic. At times, the reasons given by different supporters
will even seem contradictory. From the direct experience of one of the
authors, some advocates may support defense research programs because
they are building capability; others because research in promising better
systems in the future permits reduction, if not cancellation, of present pro-
duction programs.

Example: The astonishing success of the V-22 tilt-rotor
Osprey aircraft program in surviving four years of hos-
tility during the 1988-1992 period is directly attribut-
able to the strength of its constituency, one that
embraced not merely its original Marine Corps constit-
uency but other Armed Services as well — plus groups
that see it as benefiting the environment (by diminish-
ing airport congestion), as improving the balance of
trade (by tapping a large export market), and as main-
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taining U.S. technological leadership in the aerospace
arena.

Assembling the right constituency can be a delicate challenge because a
constituency broad enough to win the necessary votes in Congress can also
easily fall prey to internal divisions and conflicts. Such was the case for the
Shuttle and is the case for the Space Station. The scientific community proved
to be a poor constituency for major programs; the more fields that were
brought in, the less the ability to agree on mission priorities. On the other
hand, a tight, homogeneous constituency is probably too small to win the
necessary votes. The superconducting supercollider proved to be such. The
art of politics is to knit these diverse motivations together firmly enough to
survive successive budget battles and keep the selected program funded.
Generally speaking, satellites for national security purposes have succeeded
in this political art. It can require the patience of a saint coupled with the
wiliness of a Metternich, but such are the survival skills of politics.

Fact of life #4

Technical problems become political problems.
In a high-budget, high-technology, high-visibility program, there is no

such thing as a purely technical problem. Program opponents will be con-
stantly on the lookout for ammunition with which to attack the program,
and technical problems are tailor-made to that end.

The problems will normally be reported in a timely fashion. As many
programs have learned, mistakes are understandable; failing to report them
is inexcusable. In any case, reviews are mandated by the Congress as a
natural part of the program’s funding legislation. Any program that is
stretching the technological envelope will inevitably encounter technical
difficulties at one stage or another. The political result is that “technical”
reports inevitably become political documents as opponents berate and
advocates defend the program for its real or perceived shortcomings.

Judicious damage prevention and control, therefore, are constantly
required. Reports from prestigious scientific groups such as the NRC or DSB
will routinely precipitate Congressional hearings in which hostile and
friendly Congressmen will pit their respective expert witnesses against one
another; the program’s fate may then depend not only on the expertise, but
on the political agility and articulateness of the supporting witnesses. Fur-
thermore, while such hearings will spend much time on ostensibly technical
issues, the fundamental and absolutely determining consideration is always
affordability; and affordability is decided by whichever side has the most
votes.

Examples: Decades-long developments are particular-
ly prone to have their technical problems become po-
litical. Large investments have to be made each and
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every year before any useful systems appear. The
widely reported technical difficulties of the B-1 and B-
2 bombers, the C-17 cargo carrier, the Hubble tele-
scope, and the Galileo Jupiter spacecraft became mat-
ters of public as well as legislative concern. The future
of long-distance air cargo transport, of space explora-
tion, and even of NASA are all brought up for debate
and reconsideration every year. Architects, engineers,
and program managers have good reason to be con-
cerned. 

Fact of life #5

The best engineering solutions are not necessarily the best political solu-
tions.

Remember that we are dealing with two radically different logic systems
here. The requirements of political logic repeatedly run counter of those of engi-
neering logic. Take construction schedules, for example. In engineering terms,
an optimum construction schedule is one that makes the best and most
economical use of resources and time and yields the lowest unit cost. In
political terms, the optimum construction schedule is the one that the polit-
ical process decides is affordable in the current fiscal year. These two defi-
nitions routinely collide; the political definition always wins.

Example: NASA and other agencies often refer to what
is called the program cost curve. It plots total cost of
development and manufacture as a function of its du-
ration as follows (Figure 12.1):

The foregoing example leads to another provisional heuristic: 

With few exceptions, schedule delays are accepted
grudgingly; cost overruns are not, and for good rea-
son. 

The reason is basic. A cost overrun, that is, an increase over budget in
a given year, will force the client to take the excess from some other program
and that is not only difficult to do, it is hard to explain to the blameless loser
and to that program’s supporters. Schedule delays mean postponing benefits
at some future cost, neither of which affect anyone today. 

Example: Shuttle cost overruns cost the unmanned
space program and its scientific constituency two de-
cades of unpostponeable opportunities, timely mission
analyses, and individual careers based on presidential-
ly supported, wide-consensus planning.
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By the same token, a well-run program that sticks to budget can encoun-
ter very difficult technical problems and survive. 

Examples: Communication and surveillance satellite
programs. 

All in all, it can be a bewildering and intimidating process to the unini-
tiated; but it need not be so. Because, in addition to being confusing and
chaotic, this is a profoundly interesting and engrossing process, every bit as
challenging as the knottiest engineering problem. Indeed, it is an engineering
challenge because it molds the context in which systems architecting and
engineering must function.

The reader may well find the craziness of the political process distasteful,
but it will not go away. The politically naive architect may experience more
than a fair share of disillusion, bitterness, and failure. The politically astute
program manager, on the other hand, will understand the political process,
will have a strategy to accommodate it, and will counsel the architect accord-
ingly. Some suggestions for the architect: it helps to document accurately
when and why less-than-ideal technical decisions were made — and how
to mitigate them later, if necessary. It helps to budget for contingencies and
reasonably foreseeable risks. It helps to have stable and operationally useful
interim configurations and fallback positions. It helps to acknowledge the

Figure 12.1 The curve is logical and almost always true. But it is irrelevant because
the government functions on a cash-flow basis. Long-term savings will almost always
be foregone in favor of minimizing immediate outlays. Overall life-cycle economies
of scale will repeatedly be sacrificed in favor of slower acquisitions and program
stretchouts because these require lower yearly appropriations, even if they cause
higher unit costs and greater overall program expense. There is also the contradictory
perception that if a given program is held to a tight, short, schedule it will cost less
— facts not withstanding. (See Chapter 5, Social Systems, Facts vs. Perceptions.)
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client’s right to have a change of mind or to make difficult choices without
complaint from the supplier. Above all, it helps to acknowledge that living
in the client’s world can be painful, too. And finally, select a kit of prescrip-
tions for the pain such as the following from Appendix A:

• The Triage: when there is only so much that can be done, let the dying
die. Ignore those who will recover on their own. And treat only those
who would die without help.

• The most important single element of success is to listen closely to
what the customer (in this case, the Congress) perceives as his re-
quirements and to have the will and ability to be responsive (J.E.
Steiner, The Boeing Company, 1978)

• Look out for hidden agendas. 
• And so on.

That doesn’t mean that architects and engineers have to become expert
lobbyists; but it does mean having an understanding of the political context
within which programs must function, the budget battle’s rules of engage-
ment, and of those factors that are conducive to success or failure. The
political process is not outside, it is an essential element of, the process of
creating and building systems.

A few more skills to master
The following are a few more basic coping skills for the successful systems
architect. First and foremost, understand that the Congress and the political
process are the owners of your project. They are the ultimate clients. It is absolutely
essential to deal with them accordingly by making sure they understand
what you are trying to do, why it is important, and why it makes political
sense for them to support you.

Be informed. This is your life, so be active. Learn the political process
for yourself and keep track of what’s going on. Figure out what information
the political system needs in order to understand what the program needs
and arrange to supply it to them. A chief engineer has utterly different
information requirements than a Congressional oversight committee. Learn
what sort of information furthers your program’s fortunes in Washington
and then get it to your program managers so they can get it to the political
decisionmakers who determine your program’s funding. Maybe your pro-
gram has a great job-multiplier effect in some crucial lawmaker’s district.
Maybe its technology has some great potential commercial applications in
areas where the U.S. is losing a competitive battle with another country. 

The point is that the political process bases its decisions on very different
information than the engineering process does. Learn to satisfy both those sets
of requirements by plan.
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Conclusion
The political process is a necessary element of the process of creating and
building systems. It is not incomprehensible; it is different. Only when they
are not understood do the political Facts of Life instill cynicism or a sense
of powerlessness. Once understood, they become tools like any others in the
hands of an astute architect. It is a compliment to the client to use them well.
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chapter thirteen

The professionalization of 
systems architecting

Elliott Axelband, Ph.D.

Profession: Any occupation or vocation requiring training
in the liberal arts or the sciences and advanced study in a
specialized field.1

Introduction
To readers who have progressed this far, the existence of systems architecting
as a process, regardless of who performs it, can be taken for granted. Func-
tions and forms have to be matched, system integrity has to be maintained
throughout development, and systems have to be certified for use. Visions
have to be created, realized, and demonstrated.

This chapter, in contrast, covers the evolution of the systems architecting
profession. An appropriate place to begin is with the history of the closely
related profession of systems engineering, the field from which systems
architecting evolved.

The profession of systems engineering
Systems engineering as a process began in the early 1900s in the communi-
cation and aircraft industries. It evolved rapidly during and after World War
II as an important contributor to the development of large, innovative, and
increasingly complex systems. By the early 1950s systems engineering had
reached the status of a recognized, valued profession. Communication net-
works, ballistic missiles, radars, computers, and satellites were all recognized
as systems. The “systems approach” entered into everyday language in many
fields, social as well as technical. Government regulations and standards
explicitly addressed systems issues and techniques. Thousands of engineers
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called systems engineering their vocation. Professional societies formed sec-
tions with journals devoted to systems and their development.2 Universities
established systems engineering departments or systems-oriented pro-
grams.* Books addressing the process, or aspects of it, started to appear.3
Most recently, the profession became formally represented with the estab-
lishment of the International Council on Systems Engineering (INCOSE).4

The core of the systems approach from its beginnings has been the
definition and management of system interfaces and tradeoffs, of which there
can be hundreds in any one system. Systems analysis, systems integration,
systems test, and computer-aided system design were progressively devel-
oped as powerful and successful problem-solving techniques. Some have
become self-standing professions of their own under the rubric of systems
engineering. Their academic, industrial, and governmental credentials are
now well established.

All are science based; that is, based on measurables and a set of assump-
tions. In brief, these are that requirements and risks can be quantified, solu-
tions can be optimized, and compliance specified. But these same assump-
tions are also constraints on the kinds of problems that can be solved. In
particular, science-based systems engineering does not do well in problems
that are abstract, data-deficient, perceptual, or for which the criteria are
immeasurable.

For example, the meanings of such words as safe, survivable, affordable,
reliable, acceptable, good, and bad are either outside the scope of systems
engineering — “ask the client for some numbers” — or are force-fitted to it
by subjective estimates. Yet these words are the language of the clients.
Quantifying them can distort their inherent vagueness into an unintended
constraint.

There is no group of professionals that better understands these diffi-
culties than systems engineers and executives; nor who wish more to convert
immeasurable factors to quantitatively stateable problems by whatever tech-
niques can help. The first step they made was to recognize the nature of the
problems. The second was to realize that almost all of them occur at the front
(and back) ends of the engineering cycle. Consider the following descriptive
heuristics, developed long ago from systems engineering experience:

• All the serious mistakes are made in the first day.
• Regardless of what has gone before, the acceptance criteria determine

what is actually built.
• Reliability has to be designed in, not tested in.

* Among the best known are the University of Arizona at Tucson, Boston University, Carnegie
Tech, Case Western Reserve, the University of Florida, Georgia Tech, the University of Maryland,
George Mason University, Ohio State, MIT (Aerospace), New York Polytech, the University of
Tel Aviv, the University of Southern California, Virginia Polytechnic Institute, and the University
of Washington.
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It is no coincidence that many systems engineers, logically enough, now
consider systems architecting to be “the front end of systems engineering”
and that architectures are “established structures.” More precisely, systems
architecting can be seen as setting up the necessary conditions for systems
engineering and certifying its results. In short, systems architecting provides
concepts for analysis and criteria for success. In evolving systems the func-
tions of systems architecting, systems engineering, and disciplinary engi-
neering are all more episodic. Concepts for analysis and criteria for success
are established in early phases, but are revised with each new spiral through
the development process. Systems engineers must control interfaces through
many cycles of design, development, and integration, not just through one.
In addition to conducting classical architecting episodically, the systems
architect must also consider the issue of stable forms. The evolving system
should not change everything on each cycle; it needs to retain stable sub-
structures to evolve effectively. The definition of these substructures is part
of the architect’s role.

The immediate incentive for making architecting an explicit process, the
necessary precursor to establishing it as a self-standing profession comple-
mentary to systems engineering, was the recognition in the late 1980s by
systems executives that “something was missing” in systems development
and acquisition, and that the omission was causing serious trouble: system
rejection by users, loss of competitive bids to innovators, products stuck in
unprofitable niches, military failures in joint operations, system overruns in
cost and schedule, etc. — all traceable to their beginnings. Yet, there was a
strong clue to the answer. Retrospective examinations of earlier, highly suc-
cessful systems showed the existence in each case of an overarching vision,
created and maintained by a very small group, which characterized the
program from start to finish.5

Software engineers and their clients were among the first to recognize
that the source of many of their software system problems were structural;
that is, architectural.* Research in software architecture followed in such
universities as Carnegie Mellon; the University of North Carolina, Chapel
Hill; the University of California at Irvine; and the University of Southern
California. Practitioners began identifying themselves as software architects
and forming architectural teams. Communication, electronics, and aerospace
systems architects followed shortly thereafter. 

Societies established architecture working groups, notably the INCOSE
Systems Architecting Working Group6 and the IEEE Software Engineering
Standards Committee’s Architecture Working Group,7 to formulate standard

* One of the earliest and most famous books on systems architecting is The Mythical Man-Month,
Essays on Software Engineering by Frederick P. Brooks, Jr. (Addison-Wesley Publishing Company,
1974), which not only recognized the structural problems in software but, explicitly, on page
37, calls for a system architect, a select team, conceptual integrity, and for the architect to “confine
himself scrupulously to architecture” and to stay clear of implementation. Brooks’s analogy for
the architectural team was a surgical team. He credits a 1971 Harlan Mills proposal as the source
of these precepts.
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definitions of terms and descriptions for systems and software architectures.
These activities are essential to the development of a common internal lan-
guage for systems architecting, and the integration of software architecture
models and overall systems architectures in complex, software-intensive
systems.

At the scale of the profession of engineering, the recognition that some-
thing was missing led to identifying it, by direct analogy with the processes
of the classical architectural profession, as systems architecting.8 Not surpris-
ingly, the evolution of systems architecting tools was found to be already
underway in model building, discussed in Part Three, and systems stan-
dards,* discussed in the next section.

Systems architecting and systems standards
Earlier chapters have pointed out that the abstract problems of the concep-
tual and certification phases require different tools from the analytic ones of
system development, production, and test. One of the most important sets
of tools is that of systems standards. Chapter 11 discussed one type of
architecture standard: standards for architecture description. Here, we dis-
cuss a different category of standards, those that define development pro-
cesses. For historical reasons, architectural process standards were not devel-
oped as a separate set. Instead, general systems process standards were
developed which included systems architecting elements and principles
understood at the time, most of them induced from lessons learned in indi-
vidual programs. As will be seen, some key elements appeared as early as
the 1950s.

Driven by much the same needs, the recognition of systems architecting
in the late 1980s was paralleled, independently, by a recognition that existing
systems standards needed to be modified or supplemented to respond to
long-standing, systems-level structuring problems. Bringing the two tracks,
architecting and standards, together should soon help both. Architecting can
improve systems standards. Systems standards can provide valuable tools
for the systems architecting profession.

Some of the earliest systems standards in which elements of systems
architecting appeared were those of system specification, interface descrip-
tion, and interface management. They proliferated rapidly. A system speci-
fication can beget ten subsystem specifications, each of which is supported
by ten lower-level subsystem specifications, etc. All of these had to be knitted
together by a system of 100 or so interface specifications. 

Even though modern computer tools (Computer-Assisted System Engi-
neering or CASE tools) have been developed to help keep track of the

* Systems standards, for the purposes of this book, are those engineering standards having
impact on the system as a whole, whether explicitly identified as such in their titles or not.
They are a relatively small part of the totality of engineering standards. Many, if not most, are
interface and test standards.

2000 CRC Press LLC



systems engineering process, extraordinarily disciplined efforts are still
required to maintain the systems integrity.9

As systems complexity increased, systems engineers were faced with
increasingly difficult tasks of assuring that the evolving form of the system
met client needs, guaranteeing that tradeoffs maintained system intent in
the face of complications arising during development, and finally assuring
that the system was properly tested and certified for use. In due course, the
proliferation of detailed specifications led to a need for overarching guide-
lines, an overview mechanism for “structuring” the complexity that had
begun to obscure system intent and integrity.

Before continuing it should be pointed out that overarching guidelines
are not, and cannot be, a replacement for quantitative system standards and
specifications. The latter represent decades of corporate memory, measurable
acceptance criteria, and certified practices. Guidelines — performance spec-
ifications, tailorable limits, heuristics, and the like — have a fundamental
limitation. They cannot be certified by measurables. They are too “soft” and
too prone to subjective perceptions to determine to the nearest few percent-
age points whether a system performs, or costs, what it should. At some
point the system has to be measured if it is to be judged objectively. 

From the standpoint of an architecting profession, the most important
fact about system standards is that they are changing. To understand the
trend, their development will be reviewed in some detail, recognizing that
some of them are continuing to be updated and revised.

The origins of systems standards

The ballistic missile program of the 1950s
Urgent needs induce change and, eventually, improvement. The U.S./Soviet
ballistic missile race begun in the mid-to-late 1950s brought about significant
change as it led to the development and fielding of innovative and complex
systems in an environment where national survival was threatened. To its
credit, the U.S. Air Force recognized the urgent need to develop and manage
the process of complex system evolution, and did so.* The response in the
area of standards was the “375” System Standard, subsequently applied to
the development of all new complex Air Force equipment and systems.

“375” required several things that are now commonplace in systems
architecting and engineering. Timelines depicting the time-sequenced flow
of system operation were to be used as a first step in system analysis.** From

* Those responsible for this development, Dr. Simon Ramo and General Bernard Schriever in
particular, from time to time referred to their respective organizations as architects as well as
system integrators. “Architecture,” as a formalism, was largely bypassed in the urgency to build
ballistic missiles as credible deterrents. Nonetheless, the essential “architectural” step of certi-
fication of readiness for launch was incorporated from the beginning and executed by all
successor organizations. It became a centerpiece for the space launch programs of the 1960s
and thereafter.
** This is not necessarily appropriate for all systems, but it was well suited to the missile,
airplane, and weapon systems the Air Force had in mind at the time.
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these, system functional block diagrams and functional requirements were
to be derived as a basis for subsequent functional analysis and decomposi-
tion. The functional decomposition process in turn generated the subsystems
that, with their connections and constraints, comprised the system and
allowed the generation of subsystem requirements via tradeoff processes. 

“375” was displaced in 1969 by a MILSTD 499 (Military Standard – 499)*
which was applied throughout the Department of Defense (DoD). MILSTD
499A, an upgrade, was released in 1974 and was in effect for 20 years.
MILSTD 499B, a later upgrade, was unofficially released in 1994, and it was
almost immediately replaced by EIA/IS 632 Interim Systems Engineering
Standard.10

The beginning of a new era of standards

The era of MILSTDs 499/499A/499B was an era in which military standards
became increasingly detailed. It was not only these documents which gov-
erned system architecting and engineering, but they in turn referenced
numerous other DoD MILSTDs, which addressed aspects of system engi-
neering, and which were imposed on the military system engineering pro-
cess as a consequence. To cite a few: MILSTD 490, Specification Practices,
1972; MILSTD 481A, Configuration Control – Engineering Changes, Devia-
tions and Waivers (Short Form), 1972; MILSTD 1519, Test Requirements
Document, 1977; and MILSTD 1543, Reliability Program Requirements for
Space and Missile Systems, 1977. See Eisner, H., 199411 for additional exam-
ples.

This mindset changed with the end of the cold war in the late 1980s.
Cost became an increasingly important decisive factor in competitions for
military programs, supplanting performance, which had been the dominant
factor in the prior era. Lowest cost, it was argued, could only be achieved if
the restrictions of the military standards were muted. The detailed process
(“how to”) standards of the past, which specified how to conduct systems
engineering and other program operations, needed to be replaced by stan-
dards that only provided guidelines,** leaving the engineering specifics to
the proposing companies which would select these to be able to offer a low-
cost product.12 Further supporting this reasoning was the reality that the
most sophisticated components and systems in fields such as electronic
computer chips and computers were now available at low cost from com-
mercial sources, whereas in the past the state of the art was only available
from MILSTD-qualified sources. It was in this environment that EIA/IS 632
was born.

* The official form is “Mil. Std. – 499,” but for ease of reading in a text an alternate form,
“MILSTD 499,” will be used here.
** As noted earlier, replacement is a questionable motivation for guidelines. Nonetheless, the
establishment of a high-level guideline document — a key architecting technique — was a
milestone.
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EIA/IS 632, an architectural perspective
EIA/IS 632 is short by comparison with other military standards. Its main
body is 36 pages. Including appendices, its total length is 60 pages, and these
include several which have been left intentionally blank. And, most signif-
icantly, no other standards are referenced.

The scope and intent of the document is best conveyed by the following
quotes from its contents:

• “The scope …. of systems engineering (activities) are defined in terms
of what should be done, not how to do ... (them)..” p. i

• “... (EIA/IS - 632) identifies and defines the systems engineering tasks
that are generally applicable throughout the system life cycle for any
program ....” p. 7

From a systems architecting perspective it is clear that the scope of the
life cycle perspective includes the modern understanding of systems archi-
tecting.

One of the major activities of the systems architect, that of giving form
to function, is addressed in pages 9–11. These pages summarize, in their own
words and style, the client/architect relationship, the establishment of the
defining system functions, the development of the system’s architecture, and
the process of allocating system functions to architectural elements via
tradeoffs. By implication, the tradeoffs continue, with varying degrees of
concentration, throughout the life cycle.

Curiously, test and validation are deferred to a later section entitled “4.0
Detailed Requirements.” This is consistent with the historical organization
of the preceding military standards, wherein Section 4 was dedicated to
product assurance, a term which included a system test. It is, however, a
significant departure from the systems architecting point of view. A basic
tenet of systems architecting is that certification for use is one of its most
important functions, and that this should be developed in parallel with, and
as a part of, the development of a system’s architecture. Consider, for exam-
ple, some of the architecting heuristics that could apply:

• To be tested, a system must be designed to be tested.
• Regardless of what has gone before, the acceptance (and test) criteria

determine what is actually built.

There are other sound and basic architecting principles which, suitably
explained, could and should have been included as historically validated
guiding principles in EIA/IS 632 which, in its own words, “provides guid-
ance for the conduct of a systems engineering effort.” Some applicable heu-
ristics would include:

• Simplify. Simplify. Simplify.
• The greatest leverage in systems architecting is at the interfaces. 
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• Except for good and sufficient reasons, functional and physical struc-
turing should match.

• In partitioning a system into subsystems, choose a configuration with
minimal communications between subsystems.

• It is easier to match a system to the human one that supports it than
the reverse.

Beyond these, the need for an unbiased agent, the system architect, to
represent the client and technically guide the process is absent and is a
serious omission.

Commercial standards

While EIA/IS 632 applies only to military systems engineering, that was not
its original intent. The objective was to develop a universal standard for
systems engineering, which would apply to both the military and commer-
cial worlds and be ratified by all of industry. However, there was an urgency
to publish a new military standard, and in the four-month schedule that was
assigned only it could be developed. This led to two consequences. First,
IEEE P1220,13 a commercial systems engineering standard, was separately
published. Second, the merging of EIA/IS 632 with IEEE P1220 to create the
first universal standard for system engineering was planned for publication
in 1997. The development of this universal system engineering standard
involves personnel from several organizations including the American
National Standards Institute (ANSI) and EIA, and is expected to be named
EIA/ANSI 632.14 Beyond that, the International Standards Organization
(ISO) plans to issue a standard in 2000+ that will merge EIA/ANSI 632 with
ISO 12207. This latter will be published soon and will provide a universal
software engineering standard. In passing, software is included in the defi-
nition of a system as used in the prior mentioned systems engineering
standards, but not with the same level of intensity as can be found in separate
existing software engineering standards.

IEEE P 1220, an architectural perspective
The IEEE working group which generated P 1220 was sponsored by the IEEE
Computer Society and included representatives from INCOSE, the EIA, and
the IEEE AES Society. It is the first commercial standard to formally address
systems engineering. P 1220’s similarity with EIA/IS 632 derives from a fair
degree of common authorship plus a deliberate effort to: (1) coordinate
efforts in order to present a common view of systems engineering, and (2)
anticipate the eventual merger of the two documents. While the similarities
are therefore not surprising, there are significant differences that are worthy
of mention.

To begin with similarities, both standards are guides and not “how to”
instruction manuals. Both address the entire life cycle of a product. Both
share a common architecture, addressing in similar ways things that are
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becoming similar: the processes of system engineering in the military and
commercial environments. This extends to a fair degree of common vocab-
ulary, although mercifully P 1220 is freer of acronyms.

Compared to EIA/IS 632, P 1220 is more complex and longer (58 pages
in the body of the report vs. 36, and 66 pages overall vs. 60). It is much more
rigorous in its definitions and use of system hierarchical structures. It has
several significant differences that tend to favor the recognition and pro-
cesses of systems architecting.

• The subsystems which comprise a system are understood and treated
as systems. pp. 2, 4, 13

• The customer (client) is explicitly identified along with a need to
determine and quantify his expectations. p. 35

• External constraints including public and political constraints are rec-
ognized as part of the process. p. 35

• The role of system boundaries and constraints in system evolution is
considered. p. 36

• The need to evolve test plans with product evolution is expressed.
pp. 18, 19

• The explicit need to generate functional and physical architectures is
recognized, unfortunately (from a system architect’s view) in the
same section of the document which through usage defines system
architecture as the sum of the product and its defining data package.
p. A-3.

In summary, P 1220 better recognizes the systems architecting process
than does EIA/IS 632. It does, however, have significant systems architecting
shortfalls and would better serve as a systems engineering guide if the role
of the systems architect were included, and if the architecting heuristics given
in this chapter were added.

A continuing problem in all of these systems standards, highlighted in
Chapter 6, is the difference in system/subsystem hierarchies across hardware
and software. Both can be thought of hierarchically, but the hierarchical
model for software is often changed to become layered, and the hierarchy
of software units in a distributed system often does not match the associated
hardware. This often leads to significant problems in development, and
contributes to poorly structured software in systems where software devel-
opment cost dominates total development cost. Standards for distributed
system development, such as RM-ODP and UML, recognize the disjunction
and allow the software and hardware elements to be represented in their
own hierarchies. This frees the software architects from an imposed, and
often damaging, hardware-based hierarchy, but introduces new problems in
reconciling the two models to assure consistency. Engineering process stan-
dards have only begun to address this issue.
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Company standards

Each company has its own set of standards and practices that incorporate
unique core competencies, practices, and policies. These need to evolve for
a company to improve its performance and competitive posture. Company
standards serve two other functions: instructing its initiates and relating to
its customers. The latter function is stimulated whenever customers change
their standards, and it is from this perspective that the systems engineering
standards of several companies were examined. This was not an easy task
since systems architecting and engineering are viewed by those companies
engaged in them as an enabler of efficient product generation, and, as such,
applicable practices providing a competitive advantage are considered trade
secrets.

Several generalizations are possible. Today’s competitive pressures have
caused self-examination and particularly reengineering to become a regular
way of life. This has also been encouraged by popularized business litera-
ture.15 Process, as opposed to product, is the focus of such institutionalized
activity. In reviewing the process of product generation and support, systems
architecting and, in some cases, systems architects are gaining recognition,
although not always in a way clearly separated from systems engineering.

The Harris Corporation Information Systems Division recently culmi-
nated four years of activity by publishing their revised Systems Engineering
Guide Book. A generalized description is provided in Honour, 1993.16 The
128-page book is company proprietary. Discussions with its author, Eric
Honour, indicated that while systems architecting is not delineated per se,
the processes that constitute systems architecting account for approximately
25% of its pages.

Sarah Sheard and Elliot Margolis reported on the evolving systems engi-
neering process within The Loral Federal Systems Organization.17 Their con-
clusion is that there is an important relationship between the nature of a
product and the team developing it, and that, as such, there is no one best
organization for product development. However, their recent experience
indicates success with a team structure that includes a distinct architecture
team with a clearly identified chief architect working in conjunction with a
management team and both software and hardware development teams.
Their use of the terms architect, architectures, and architecting are consistent
with those of this book.

Hughes Aircraft published its 3-inch thick Systems Engineering Handbook
in 1994.18 Its objective, stated on page P-1, is to “.... improve both the quality
and efficiency of systems engineering at Hughes.” The handbook describes
the then applicable MILSTD 499B and the Hughes systems engineering
processes for both DoD and non-DoD programs, including Hughes’ organi-
zational and other resources available to implement these. It is a very com-
prehensive, user-friendly book, clearly adapted from MILSTD 499B, and
includes the activities of the systems architect — who is never identified by
that name — within the framework of systems engineering. The systems
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engineering function and organization is identified as the technical lead
organization for product development and is provided a unique identity in
all forms of organization discussed: functional, projectized, and matrix. In
that the handbook is patterned after MILSTD 499B which has a strong
resemblance to EIA/IS 632, the comments made earlier with respect to
EIA/IS 632 apply. 

A summary of standards developments, 1950-1995

For a variety of reasons and by a number of routes, system standards and
specifications are evolving consistent with the principles and techniques of
systems architecting. The next step is the use of system architects to help
improve systems standards, particularly in system conception, test, and
certification. At the same time, improved systems standards can provide
powerful tools for the systems architecting profession.

A cautionary note: the recent and understandable enthusiasm of the DoD
to streamline standards and eliminate all references to prior MILSTDs could
make systems architecting considerably more difficult. Useful as guidelines
are, they are no substitute for quantitative standards for bidding purposes,
for certifying a system for use, or for establishing responsibility and liability.*
MILSTDs in many instances incorporate specific philosophical and quanti-
tative requirements based on lessons dearly learned in the real world. They
reduce uncertainty in areas that should not or need not be uncertain. To
ignore these by omission is to run the risk of learning them all over again
at great cost. To the extent that the lessons relearned are architectural, the
risks can be enormous. As the heuristic states, all the serious mistakes are
made on the first day.

Systems architecting graduate education
Systems engineering universities and systems architecting

Graduate education, advanced study, and research give a profession its
character. They distinguish it from routine work by making it a vocation, a
calling of the particularly qualified.

The first university to offer masters and doctorate degrees in systems
engineering was the University of Arizona, beginning in 1961. The program
began as a graduate program; an undergraduate program, and the addition
of industrial engineering to the department title, came later. Still in existence,
the graduate department has well over 1000 alumni.

The next to offer advanced degrees was the Virginia Institute of Tech-
nology in 1971, but not until after 1984 did additional universities join the
systems engineering ranks. They included Boston University, George Mason
University, the Massachusetts Institute of Technology (MIT), the University

* In this connection, the DoD has explicitly retained interface and certification standards as
essential, not to be considered as candidates for elimination.
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of Maryland, the University of Southern California (USC), the University of
Tel Aviv, and the University of Washington. It is worth noting that all are
located at major centers of industry or government, the principal clients and
users of systems engineering.

To the best knowledge of the authors of this book, USC is the first to
offer a graduate degree in systems architecting and engineering with the
focus on systems architecting. However, of the universities offering graduate
degrees in systems engineering, some half dozen now include systems achi-
tecting within their curricula. Notable among them is the MIT Systems
Design and Management (SDM) program. This program, which is intended
as a new kind of graduate education program for technical professionals, is
built on three core subjects: systems engineering, systems architecture, and
project management. While the degree is not focused on systems architect-
ing, that subject forms a major part of the curriculum’s core. The MIT SDM
curriculum is becoming more of a national model as it is spread through the
Product Development in the 21st century (PD21) program. PD21 is creating
programs that are very similar to MIT’s SDM program in universities across
the country. The current universities involved are the Rochester Institute of
Technology, the University of Detroit-Mercy, and the Naval Postgraduate
School.

Architecting is also becoming a strong interest in universities offering
advanced degrees in computer science with specializations in software and
computer architectures, notably, Carnegie Mellon University, the Universi-
ties of California at Berkeley and Irvine, and USC. At USC, the systems
architecture and engineering degree began with an experimental course in
1989; it formally became a masters degree program in 1993 following its
strong acceptance by students and industry.

In the last 10 years there has been growing recognition of the value of
interdisciplinary programs, which of itself would favor systems architecting
and engineering. These have been soul-searching years for industry, and the
value of system architecting and engineering has become appreciated as a
factor in achieving a competitive advantage. Also, the restructuring of indus-
try has caused a rethinking of the university as a place to provide industry-
specific education. These trends, augmented by the success of the system
architecting and engineering education programs, have caused university
architect-engineering programs to prosper. 

The success of these programs can be measured in several ways. First,
the direction is one of growth as 7 out of the 8 existing masters programs
were started in the last 15 years; and the Universities of Maryland, Tel Aviv,
and Southern California are all considering expanding their programs to
include a Ph.D. Second, systems architecting and systems architecting edu-
cation are making a positive difference in industry, as supported by industry
surveys. In point of fact, company-sponsored systems architecting enroll-
ments increased even when there was industrial contraction.
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Curriculum design

It is not enough in establishing a profession to show that universities are
interested in the subject. The practical question is what is actually taught;
that is, the curriculum. Because USC is apparently the first university to offer
an advanced degree specifically in systems architecture and engineering, its
curriculum is described. It should be pointed out that this curriculum is at
the graduate level. To date, no undergraduate degree is offered or planned. 

The USC masters program admits students satisfying the School of Engi-
neering’s academic requirements and having a minimum of three years
applicable industrial experience. Students propose a 10-course curriculum
which is reviewed, modified if required, and accepted as part of their admis-
sion. The curriculum requires graduate-level courses as follows:

• An anchor systems architecting course
• An advanced engineering economics course
• One of several specified engineering design courses
• Two elective courses in technical management from a list of eleven

which are offered
• One of eight general technical area elective courses
• Four courses from one of eleven identified technical specialization

areas, each of which has six or more courses offered

The structure of this MS in Systems Architecture and Engineering cur-
riculum has been designed based on both industrial and academic advice.
Systems architecture is better taught in context. It is too much to generally
expect a student to appreciate the subtleties of the subject without some
experience; and the material is best understood through a familiar specialty
area in which the student already practices. The three-year minimum expe-
rience requirement and the requirement of four courses in a technical spe-
cialty area derive from this reasoning. 

The need for an anchor course is self-evident. Systems architecture
derives from inductive and heuristic reasoning, unlike the deductive reason-
ing used in most other engineering courses. To fully appreciate this differ-
ence, the anchor course is taken early, if not first, in the sequence. The course
contains no exams as such, but requires two professional quality reports so
that the student can best experience the challenges of systems architecting
and architecture by applying his knowledge in a dedicated and concentrated
way.

Experience has shown that a design experience course, the advanced
economics course, and courses in technical management are valuable to the
system architect and, therefore, they are curriculum requirements. The addi-
tional course in a general technical area allows the student to select a course
that most rounds out the student’s academic experience. Possibilities include
a systems architecting seminar, a course on decision support systems, and
a course on the political process in systems architecture design.
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To date within the USC program there have been 60 masters graduates.
Over 300 have taken the anchor course, and 40 students are enrolled masters
candidates. A library of over 150 research papers has been produced from
the best of the student papers, and is available as a research library for those
in the program. Several students are proceeding toward a Ph.D. in Systems
Engineering with a specialty in Systems Architecting. 

Advanced study in systems architecting

A major component of advanced study in any profession is graduate-level
research and refereed publications at major universities. In systems archi-
tecting, advanced study can be divided into two relatively distinct parts:
that of its science, closely related to that of systems engineering, and of its
art. The universities committed to systems engineering education were given
earlier. Advanced study in its art, though often illustrated by engineering
examples, has many facets, including research in: 

• Complexity, by Flood and Carson19 at City University, London, En-
gland

• Problem solving, by Klir20 at the State University of New York at
Binghamton, and by Rubinstein21 at the University of California at
Los Angeles

• Systems and their modeling, by Churchman22 at the University of
California at Berkeley, and Nadler23 and Rechtin24 at the University of
Southern California

• The behavioral theory of architecting, by Lang25 at the University of
Pennsylvania, Rowe26 at Harvard, and Losk, Carpenter, Cureton, Geis,
and Carpenter27 at USC

• The practice of architecture by Alexander28 and Kostof29 at University
of California at Berkeley

• Machine (artificial) intelligence and computer science by Genesereth
and Nilsson30 at Stanford, Newell31 and Simon32 at Carnegie Mellon
University, and Brooks33 at the University of North Carolina at Chapel
Hill

• Software architecting by Garlan and Shaw34 at Carnegie Mellon Uni-
versity, and Barry Boehm at USC

All have contributed basic architectural ideas to the field. Many are
standard references for an increasing number of professional articles by a
growing number of authors. Most deal explicitly with systems, architectures,
and architects, although the practical art of systems architecting was seldom
the primary motivation for the work. That situation predictably will change
rapidly as both industry and government face international competition in
a new era.
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Professional societies and publications
Existing journals and societies were the initial professional media for the
new fields of systems architecting and engineering. Since much early work
was done in aerospace and defense, it is understandable that the IEEE Society
on Systems Man and Cybernetics, the IEEE Aerospace Electronics Society,
and the American Institute of Aeronautics and Astronautics and their jour-
nals, along with others, became the professional outlets for these fields. One
excellent sample paper from this period (Boonton and Ramo, 198435)
explained the contributions that systems engineering had made to the U.S.
ballistic missile program. 

The situation changed in 1990 when the first National Council on System
Engineering conference was held and attracted 100 engineers. INCOSE
became the first professional society dedicated to systems engineering and
soon established a Systems Architecting Working Group.

The society, with a current membership of 3500 (one third of which are
outside the U.S.), publishes a quarterly newsletter and a journal. The journal
first appeared in 1994 and it published jointly with The IEEE AES Society in
1996. Since then it has become a stand-alone, quarterly publication.

Conclusion: an assessment of the profession
The profession of systems architecting has come a long way, and its journey
has just begun. Its present body of professionals in industry and academia
— beginning most often in electronics, control and software systems, soon
broadening into systems engineering — formed the core of small design
teams and now consider themselves as architects. The profession has been
nurtured within the framework of systems engineering, and no doubt will
maintain a tight relationship with it. A masters-level university curricula
now exists, and the material and ideas are suffusing into many other systems-
oriented programs. Applicable research is underway in universities. Appli-
cable standards and tools are being developed at the national level. It has
an acknowledged home within INCOSE as well as other professional soci-
eties that, together with their publications, provide a medium for profes-
sional expression and development. 

It is interesting to speculate on where the profession might be going and
how it might get there. The cornerstone thought is that the future of a
profession of systems architecting will be largely determined by the percep-
tions of its utility by its clients. If a profession is useful, it will be sponsored
by them and prosper. To date, all indicators are positive.

Judging by the events that have led to its status today, and by comparable
developments in the history of classical architecture, systems architecting
could well evolve as a separate business entity. The future could hold more
systems architecting firms that bid for the business of acting as the technical
representative or agent of clients with their builders. There are related pre-
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cedents today in Federally Funded Research and Development Centers
(FFRDCs) and Systems Engineering and Test Assistance Contractors (SET-
ACs), which are independent entities selected by the DoD to represent it
with defense contractors that build end products. Similar precedents exist
in NASA and the Department of Energy.

The role of graduate education is likely to grow and spread. Today’s
products and processes are more netted and interrelated than those of ten
years ago, and tomorrow’s will be even more so. System thinking is proving
to be fundamental to commercial success, and systems architecting will
increasingly become a crucial part of new product development. It is incum-
bent upon universities to capture the intellectual content of this phenomenon
and embody it in their curricula. This will require a tight coupling with
industry to be aware of important real-world problems, a dedication to
research to provide some of the solutions, and an education program that
trains students in relevant architectural thinking.

Publishe, peer-reviewed research has stood the test of time, providing
the best medium for the rapid dissemination of state-of-the-art thinking.
Today INCOSE’s Systems Architecting Working Group provides one such
outlet. Still others will be needed for further growth.

In summary, all the indicators point to a future of high promise and
value to all stakeholders.
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Appendix A

Heuristics for systems-level 
architecting

Experience is the hardest kind of teacher. 
It gives you the test first and the lesson afterward.
(Susan Ruth 1993)

Introduction: organizing the list
The heuristics to follow were selected from Rechtin, 1991, the Collection of
Student Heuristics in Systems Architecting, 1988-93,1 and from subsequent
studies in accordance with the selection criteria of Chapter 2. The list is
intended as a tool store for top-level systems architecting. Heuristics con-
tinue to be developed and refined not only for this level, but for domain-
specific applications as well, often migrating from domain-specific to system
level, and vice versa.*

For easy search and use, the heuristics are grouped by architectural task
and categorized by being either descriptive or prescriptive; that is, by
whether they describe an encountered situation or prescribe an architectural
approach to it, respectively. 

There are over 180 heuristics in the listing to follow, far too many to
study at any one time; nor were they intended to be.The listing is intended
to be scanned as one would scan software tools on software store shelves,
looking for ones that can be useful immediately but remembering that others
are also there. Although some are variations of other heuristics, the vast
majority stand on their own, related primarily to others in the near vicinity
on the list. Odds are that the reader will find the most interesting heuristics
in clusters, the location of which will depend on the reader’s interests at the
time. The section headings are by architecting task. A “D” signifies a descrip-
tive heuristic; a “P”signifies a prescriptive one. When readily apparent, pre-

* The manufacturing, social, communication, software, management, business, and economics
fields are particularly active in proposing and generating heuristics — though they usually are
called principles, laws, rules, or axioms.
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scriptions are grouped by insetting under appropriate descriptions or alter-
nate prescriptions; otherwise, not. In the interest of brevity, an individual
heuristic is listed in the task where it is most likely to be used most often.
As noted in Chapter 2, some 20% can be tied to related ones in other tasks.

A major difference between a heuristic and an unsupported assertion is
the credibility of the source. To the extent possible, the heuristics are credited
to the individuals who, to the authors’ knowledge, first suggested them. To
further aid the reader in judging credibility or in finding the sources, the
heuristics to follow are given symbols. These symbols indicate the following: 

[ ] An informal discussion with the individual indicated, unpublished. 
( ) A formal, dated source, with examples, located in the USC MS-SAE

program archive, especially in the Collection of Student Heuristics in
Systems Architecting, 1988-93. For further information, contact the
Master of Science Program in Systems Architecture and Engineering,
USC School of Engineering, University Park, Los Angeles, CA 90089-
1450.
*Rechtin, 1991, where it is sourced more formally. By permission of
Prentice-Hall, Englewood Cliffs, NJ.

Bold Key words useful for quick search. Otherwise, heuristics to follow
are in plain type to make page reading easier. Real-world examples
of each can be found in the references indicated.

The authors apologize in advance for any miscrediting of sources. Cor-
rections are welcome. The readers are reminded that not all heuristics apply
to all circumstances, just most to most.

Heuristic tool list
Multitask heuristics

D Performance, cost, and schedule cannot be specified independently.
At least one of the three must depend on the others.*

D With few exceptions, schedule delays will be accepted grudgingly;
cost overruns will not, and for good reason.

D The time to completion is proportional to the ratio of the time spent
to the time planned to date. The greater the ratio, the longer the time
to go.

D Relationships among the elements are what give systems their added
value.*

D Efficiency is inversely proportional to universality. (Douglas R. King,
1992)

* As indicated in the introduction to this appendix, an asterisk indicates that this heuristic is
taken from Rechtin, E., Systems Architecting, Creating & Building Complex Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1991. With permission of Prentice-Hall, Englewood Cliffs, NJ 07632.
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D Murphy’s Law, “If anything can go wrong, it will.”*
P Simplify. Simplify. Simplify.*
P The first line of defense against complexity is simplicity of de-
sign. 
P Simplify, combine, and eliminate. (Suzaki, 1987)
P Simplify with smarter elements. (N. P. Geiss, 1991)
P The most reliable part on an airplane is the one that isn’t there
— because it isn’t needed. [DC-9 Chief Engineer, 1989]

D One person’s architecture is another person’s detail. One person’s
system is another’s component. [Robert Spinrad, 1989]* 

P In order to understand anything, you must not try to under-
stand everything. (Aristotle, 4th cent. B.C.)

P Don’t confuse the functioning of the parts for the functioning of the
system. (Jerry Olivieri, 1992)

D In general, each system level provides a context for the level(s) below.
(G. G. Lendaris, 1986)

P Leave the specialties to the specialist. The level of detail required
by the architect is only to the depth of an element or component
critical to the system as a whole. (Robert Spinrad, 1990) But the
architect must have access to that level and know, or be informed,
about its criticality and status. (Rechtin, 1990)
P Complex systems will develop and evolve within an overall
architecture much more rapidly if there are stable intermediate
forms than if there are not. (Simon, 1969)*

D Particularly for social systems, it’s the perceptions, not the facts, that
count.

D  In introducing technological and social change, how you do it is
often more important than what you do.*

P If social cooperation is required, the way in which a system is
implemented and introduced must be an integral part of its archi-
tecture.*

D If the politics don’t fly, the hardware never will. (Brenda Forman,
1990) 

D Politics, not technology, sets the limits of what technology is
allowed to achieve.
D Cost rules.
D A strong, coherent constituency is essential.
D Technical problems become political problems.
D There is no such thing as a purely technical problem. 
D The best engineering solutions are not necessarily the best po-
litical solutions.

D Good products are not enough. Implementations matter. (Morris and
Ferguson, 1993)

P To remain competitive, determine and control the keys to the
architecture from the very beginning.
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Scoping and planning

The beginning is the most important part of the work.
(Plato, 4th cent. B.C.)
Scope! Scope! Scope! (William C. Burkett, 1992)

D Success is defined by the beholder, not by the architect.*
P The most important single element of success is to listen closely
to what the customer perceives as his requirements and to have
the will and ability to be responsive. (J. E. Steiner, 1978)*
P Ask early about how you will evaluate the success of your
efforts. (Hayes-Roth et al., 1983)
P For a system to meet its acceptance criteria to the satisfaction
of all parties, it must be architected, designed, and built to do so
— no more and no less.*
P Define how an acceptance criterion is to be certified at the same
time the criterion is established.* 
D Given a successful organization or system with valid criteria for
success, there are some things it cannot do — or at least not do
well. Don’t force it!
P The strengths of an organization or system in one context can
be its weaknesses in another. Know when and where.*
D There’s nothing like being the first success.*
P If at first you don’t succeed, but the architecture is sound, try,
try again. Success sometimes is where you find it. Sometimes it
finds you.*
D A system is successful when the natural intersection of technol-
ogy, politics, and economics is found. (A. D. Wheelon, 1986)*
D Four questions, the Four Whos, need to be answered as a self-
consistent set if a system is to succeed economically; namely, who
benefits?, who pays? and, as appropriate, who loses?

D Risk is (also) defined by the beholder, not the architect. 
P If being absolute is impossible in estimating system risks, then
be relative.* 

D No complex system can be optimum to all parties concerned, nor all
functions optimized.*

P Look out for hidden agendas.*
P It is sometimes more important to know who the customer is
than to know what the customer wants. (Whankuk Je, 1993)
D The phrase, “I hate it,” is direction. (Lori I. Gradous, 1993)

P Sometimes, but not always, the best way to solve a difficult problem
is to expand the problem, itself.*

P Moving to a larger purpose widens the range of solutions. (Ger-
ald Nadler, 1990)
P Sometimes it is necessary to expand the concept in order to
simplify the problem. (Michael Forte, 1993)
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P [If in difficulty,] reformulate the problem and re-allocate the
system functions. (Norman P. Geis, 1991)
P Use open architectures.You will need them once the market
starts to respond.

P Plan to throw one away. You will anyway. (F. P. Brooks, Jr., 1982)
P You can’t avoid redesign. It’s a natural part of design.*

P Don’t make an architecture too smart for its own good.* 
D Amid a wash of paper, a small number of documents become critical

pivots around which every project’s management revolves. (F. P.
Brooks, Jr., 1982)* 

P Just because it’s written, doesn’t make it so. (Susan Ruth, 1993) 
D In architecting a new [software] program all the serious mistakes are

made in the first day. [Spinrad, 1988] 
P The most dangerous assumptions are the unstated ones. (Dou-
glas R. King, 1991)
D Some of the worst failures are systems failures.

D In architecting a new [aerospace] system, by the time of the first
design review, performance, cost, and schedule have been predeter-
mined. One might not know what they are yet, but to first order all
the critical assumptions and choices have been made which will de-
termine those key parameters.* 

P Don’t assume that the original statement of the problem is necessarily
the best, or even the right, one.*

P Extreme requirements, expectations, and predictions should re-
main under challenge throughout system design, implementation,
and operation.
P Any extreme requirement must be intrinsic to the system’s de-
sign philosophy and must validate its selection. “Everything must
pay its way on to the airplane.” [Harry Hillaker, 1993]
P Don’t assume that previous studies are necessarily complete,
current or even correct. (James Kaplan, 1992)
P Challenge the process and solution, for surely someone else will
do so. (Kenneth L. Cureton, 1991)
P Just because it worked in the past there’s no guarantee that it
will work now or in the future. (Kenneth L. Cureton, 1991)
P Explore the situation from more than one point of view. A seem-
ingly impossible situation might suddenly become transparently
simple. (Christopher Abts, 1988)

P Work forward and backward. (A set of heuristics from Rubinstein,
1975.)*

Generalize or specialize.
Explore multiple directions based on partial evidence.
Form stable substructures.
Use analogies and metaphors.
Follow your emotions.
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P Try to hit a solution that, at worst, won’t put you out of business.
(Bill Butterworth as reported by Laura Noel, 1991)

P The order in which decisions are made can change the architecture
as much as the decisions themselves. (Rechtin, 1975, IEEE SPEC-
TRUM)

P Build in and maintain options as long as possible in the design and
build of complex systems. You will need them. OR...Hang on to the
agony of decision as long as possible. [Robert Spinrad, 1988]*

P Successful architectures are proprietary, but open. [Morrison
and Ferguson, 1993]

D Once the architecture begins to take shape, the sooner contextual
constraints and sanity checks are made on assumptions and require-
ments, the better.*

D Concept formulation is complete when the builder thinks the system
can be built to the client’s satisfaction.* 

D The realities at the end of the conceptual phase are not the models
but the acceptance criteria.*

P Do the hard parts first.
P Firm commitments are best made after the prototype works.

Modeling (see also Chapters 3 and 4)

P If you can’t analyze it, don’t build it.
D Modeling is a craft and at times an art. (William C. Burkett, 1994)
D A vision is an imaginary architecture…no better, no worse than the

rest of the models. (M. B. Renton, Spring, 1995)
D From psychology: if the concepts in the mind of one person are very

different from those in the mind of the other, there is no common
model of the topic and no communication. [Taylor, 1975] OR... From
telecommunications: The best receiver is one that contains an internal
model of the transmitter and the channel. [Robert Parks and Frank
Lehan, 1954]*

D A model is not reality.* 
D The map is not the territory. (Douglas R. King, 1991)*
P Build reality checks into model-driven development. [Larry Du-
mas, 1989]* 
P Don’t believe nth order consequences of a first order [cost]
model. [R. W. Jensen, circa 1989]

D Constants aren’t and variables don’t. (William C. Burkett, 1992)
D One insight is worth a thousand analyses. (Charles W. Sooter, 1993)

P Any war game, systems analysis, or study whose results can’t
easily be explained on the back of an envelope is not just worthless,
it is probably dangerous. [Brookner-Fowler, circa 1988]

D Users develop mental models of systems based [primarily] upon the
user-to-system interface. (Jeffrey H. Schmidt)
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D If you can’t explain it in five minutes, either you don’t understand it
or it doesn’t work. (Darcy McGinn, 1992 from David Jones)

P The eye is a fine architect. Believe it. [Wernher von Braun, 1950]
D A good solution somehow looks nice. (Robert Spinrad, 1991)

P Taste: an aesthetic feeling which will accept a solution as right
only when no more direct or simple approach can be envisaged.
[Robert Spinrad, 1994]
P Regarding intuition, trust but verify. (Jonathan Losk, 1989)

Prioritizing (trades, options, and choices)

D In any resource-llimited situation, the true value of a given service
or product is determined by what one is willling to give up to obtain it.

P When choices must be made with unavoidably inadequate informa-
tion, choose the best available and then watch to see whether future
solutions appear faster than future problems. If so, the choice was at
least adequate. If not, go back and choose again.* 

P When a decision makes sense through several different frames, it’s
probably a good decision. (J. E. Russo, 1989)

D The choice between architectures may well depend upon which set
of drawbacks the client can handle best.*

P If trade results are inconclusive, then the wrong selection criteria were
used. Find out [again] what the customer wants and why they want
it, then repeat the trade using those factors as the [new] selection
criteria. (Kenneth Cureton, 1991)

P The triage: Let the dying die. Ignore those who will recover on their
own. And treat only those who would die without help.* 

P Every once in a while you have to go back and see what the real world
is telling you. [Harry Hillaker, 1993]

Aggregating (“chunking”)

P Group elements that are strongly related to each other, separate ele-
ments that are unrelated.

D Many of the requirements can be brought together to complement
each other in the total design solution. Obviously the more the design
is put together in this manner, the more probable the overall success.
(J. E. Steiner, 1978)

P Subsystem interfaces should be drawn so that each subsystem can be
implemented independently of the specific implementation of the
subsystems to which it interfaces. (Mark Maier, 1988)

P Choose a configuration with minimal communications between the
subsystems. (computer networks)*

P Choose the elements so that they are as independent as possible;
that is, elements with low external complexity (low coupling) and
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high internal complexity (high cohesion). (Christopher Alexander,
1964 modified by Jeff Gold, 1991)* 
P Choose a configuration in which local activity is high speed and
global activity is slow change. (Courtois, 1985) *

P Poor aggregation results in gray boundaries and red performance.
(M. B. Renton, Spring, 1995)

P Never aggregate systems that have a conflict of interest; parti-
tion them to ensure checks and balances. (Aubrey Bout, 1993)
P Aggregate around “testable” subunits of the product; partition
around logical subassemblies. (Ray Cavola, 1993)
P Iterate the partition/aggregation procedure until a model con-
sisting of 7 ± 2 chunks emerge. (Moshe F. Rubinstein, 1975)
P The optimum number of architectural elements is the amount
that leads to distinct action, not general planning. (M. B. Renton,
Spring, 1995)

P System structure should resemble functional structure.*
P Except for good and sufficient reasons, functional and physical
structuring should match.*
P The architecture of a support element must fit that of the system
which it supports. It is easier to match a support system to the
human it supports than the reverse.* 

P Unbounded limits on element behavior may be a trap in unexpected
scenarios. [Bernard Kuchta, 1989]*

Partitioning (decompositioning)

P Do not slice through regions where high rates of information ex-
change are required. (computer design)*

D The greatest leverage in architecting is at the interfaces.*
P Guidelines for a good quality interface specification: they must
be simple, unambiguous, complete, concise, and focus on sub-
stance. Working documents should be the same as customer deliv-
erables; that is, always use the customer’s language, not engineer-
ing jargon. [Harry Hillaker, 1993]
P The efficient architect, using contextual sense, continually looks
for likely misfits and redesigns the architecture so as to eliminate
or minimize them. (Christopher Alexander, 1964)* It is inadequate
to architect up to the boundaries or interfaces of a system; one
must architect across them. (Robert Spinrad, as reported by Susan
Ruth, 1993)
P Since boundaries are inherently limiting, look for solutions out-
side the boundaries. (Steven Wolf, 1992)
P Be prepared for reality to add a few interfaces of its own.*

P Design the structure with good “bones.”*
P Organize personnel tasks to minimize the time individuals spend

interfacing. (Tausworthe, 1988)*
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Integrating

D Relationships among the elements are what give systems their added
value.* 

P The greatest leverage in system architecting is at the interfaces.*
P The greatest dangers are also at the interfaces. [Raymond, 1988]
P Be sure to ask the question: “What is the worst thing that other
elements could do to you across the interface? [Kuchta, 1989]

D Just as a piece and its template must match, so must a system and
the resources which make, test, and operate it; or, more briefly, the
product and process must match. Or, by extension, a system archi-
tecture cannot be considered complete lacking a suitable match with
the process architecture.*

P When confronted with a particularly difficult interface, try
changing its characterization.*

P Contain excess energy as close to the source as possible.*
P Place barriers in the paths between energy sources and the ele-
ments the energy can damage. (Kjos, 1988)*

Certifying (system integrity, quality, and vision)

D As time to delivery decreases, the threat to functionality increases.
(Steven Wolf, 1992)

P If it is a good design, insure that it stays sold. (Dianna Sammons,
1991)

D Regardless of what has gone before, the acceptance criteria determine
what is actually built.* 

D The number of defects remaining in a (software) system after a
given level of test or review (design review, unit test, system test,
etc.) is proportional to the number found during that test or review.
P Tally the defects, analyze them, trace them to the source, make
corrections, keep a record of what happens afterward, and keep
repeating it. [Deming] 
P Discipline. Discipline. Discipline. (Douglas R. King, 1991) 
P The principles of minimum communications and proper parti-
tioning are key to system testability and fault isolation. (Daniel
Ley, 1991)*
P The five whys of Toyota’s lean manufacturing. (To find the basic
cause of a defect, keep asking “why” from effect to cause to cause
five times.)

D The test setup for a system is itself a system.*
P The test system should always allow a part to pass or fail on its
own merit. [James Liston, 1991]*
P To be tested, a system must be designed to be tested.*
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D An element “good enough” in a small system is unlikely to be good
enough in a more complex one.* 

D Within the same class of products and processes, the failure rate of
a product is linearly proportional to its cost.* 

D The cost to find and fix an inadequate or failed part increases by an
order of magnitude as it is successively incorporated into higher
levels in the system. 

P The least expensive and most effective place to find and fix a
problem is at its source. 

D Knowing a failure has occurred is more important than the actual
failure. (Kjos, 1988)

D Mistakes are understandable, failing to report them is inexcusable. 
D Recovery from failure or flaw is not complete until a specific mecha-

nism, and no other, has been shown to be the cause.*
D Reducing failure rate by each factor of two takes as much effort as

the original development.* 
D Quality can’t be tested in, it has to be built in.* 

D You can’t achieve quality...unless you specify it. (Deutsch, 1988) 
P Verify the quality close to the source. (Jim Burruss, 1993)
P The five whys of Japan’s lean manufacturing. (Hayes, et al.,
1988)2

D High quality, reliable systems are produced by high quality
architecting, engineering, design, and manufacture, not by inspec-
tion, test, and rework.*
P Everyone in the development and production line is both a
customer and a supplier.

D Next to interfaces, the greatest leverage in architecting is in aiding
the recovery from, or exploitation of, deviations in system perfor-
mance, cost, or schedule.*

Assessing performance, cost, schedule, and risk

D A good design has benefits in more than one area. (Trudy Benjamin,
1993)

D System quality is defined in terms of customer satisfaction, not re-
quirements satisfaction. (Jeffrey Schmidt, 1993)

D If you think your design is perfect, it’s only because you haven’t
shown it to someone else. [Harry Hillaker, 1993]

P Before proceeding too far, pause and reflect. Cool off periodi-
cally and seek an independent review. (Douglas R. King, 1991)

D Qualification and acceptance tests must be both definitive and pass-
able.*

P High confidence, not test completion, is the goal of successful
qualification. (Daniel Gaudet, 1991)
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P Before ordering a test decide what you will do if it is: (l) positive
or (2) it is negative. If both answers are the same, don’t do the test.
(R. Matz, M. D., 1977)

D “Proven” and “state of the art” are mutually exclusive qualities. (Lori
I. Gradous, 1993) 

D The bitterness of poor performance remains long after the sweetness
of low prices and prompt delivery are forgotten. (Jerry Lim, 1994)

D The reverse of diagnostic techniques are good architectures. (M.B.
Renton, 1995)

D Unless everyone who needs to know does know, somebody, some-
where will foul up. 

P Because there’s no such thing as immaculate communication,
don’t ever stop talking about the system. (Losk, 1989)*

D Before it’s tried, it’s opinion. After it’s tried, it’s obvious. (William C.
Burkett, 1992) 

D Before the war it’s opinion. After the war, it’s too late! (Anthony
Cerveny, 1991)

D The first quick look analyses are often wrong.*
D In correcting system deviations and failures it is important that all

the participants know not only what happened and how it happened,
but why as well.* 

P Failure reporting without a close out system is meaningless.
(April Gillam, 1989)
P Common , if undesirable, responses to indeterminate outcomes
or failures:*

If it ain’t broke, don’t fix it.
Let’s wait and see if it goes away or happens again.
It was just a random failure. One of those things.
Just treat the symptom. Worry about the cause later.
Fix everything that might have caused the problem.
Your guess is as good as mine. 

D Chances for recovery from a single failure or flaw, even with complex
consequences, are fairly good. Recovery from two or more indepen-
dent failures is unlikely in real-time and uncertain in any case.* 

Rearchitecting, evolving, modifying, and adapting

The test of a good architecture is that it will last.
The sound architecture is an enduring pattern.
[Robert Spinrad, 1988]

P The team that created and built a presently successful product is often
the best one for its evolution — but seldom for creating its replace-
ment.
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D If you don’t understand the existing system, you can’t be sure you’re
re-architecting a better one. (Susan Ruth, 1993)

P When implementing a change, keep some elements constant to pro-
vide an anchor point for people to cling to. (Jeffrey H. Schmidt, 1993)

P In large, mature systems, evolution should be a process of in-
gress and egress. (IEEE, 1992; Jeffrey Schmidt, 1992)
P Before the change, it is your opinion. After the change it is your
problem. (Jeffrey Schmidt, 1992)

D Unless constrained, re-architecting has a natural tendency to proceed
unchecked until it results in a substantial transformation of the sys-
tem. (Charles W. Sooter, 1993)

D Given a change, if the anticipated actions don’t occur, then there is
probably an invisible barrier to be identified and overcome. (Susan
Ruth, 1993)

Exercises

Exercise: What favorite heuristics, rules of thumb, facts of life, or just
plain common sense do you apply to your own day-to-day living —
at work, at home, at play? What heuristics, etc., have you heard on
TV or the radio; for example, on talk radio, action TV, children’s
programs? Which ones would you trust?

Exercise: Choose a system, product, or process with which you are
familiar and assess it using the appropriate foregoing heuristics. What
was the result? Which heuristics are or were particularly applicable?
What further heuristics were suggested by the system chosen? Were
any of the heuristics clearly incorrect for this system? If so, why?

Exercise: Try to spot heuristics and insights in the technical literature.
Some are easy; they are often listed as principles or rules. The more
difficult ones are buried in the text but contain the essence of the
article or state something of far broader application than the subject
of the piece.

Exercise: Try to create a heuristic of your own — a guide to action,
decision making, or to instruction of others.

Notes and references
1. Rechtin, E., Editor, University of Southern California, Los Angeles, CA, March

15, 1994 (unpublished but available to students and researchers on request).
2. Hayes, R. H., Wheelwright, S. C., and Clark, K. B., Dynamic Manufacturing,

Creating the Learning Organization, Free Press, New York, 1988.
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Appendix B

Reference texts suggested for 
institutional libraries

The following list of texts is offered as a brief guide to books that would be
particularly appropriate to an architecting library. 

Architecting background
Alexander, C., A Pattern Language: Towns, Buildings, Construction, Oxford

University Press, New York, 1977.
Alexander, C., The Timeless Way of Building, Oxford University Press, New

York, 1979.
Alexander, C., Notes on the Synthesis of Form, Harvard University Press,

Cambridge, MA, 1964.
Kostoff, Spiro, The Architect, Oxford University Press, 1977, paperback.
Lang, Jon, Creating Architectural Theory, van Nostrand Reinhold Company,

1987.
Rowe, P.G., Design Theory, The MIT Press, Cambridge, MA, 1987.
Vitruvius, The Ten Books on Architecture, translated by Morris Hicky Morgan,

Dover Publications, 1960, paperback.

Management
Augustine, N.R., Augustine's Laws, AIAA, Inc., 1982.
Deal, Terrence E. and Kennedy, A. A., Corporate Cultures, The Rites and Rituals

of Corporate Life, Addison-Wesley, Reading, MA, 1988.
DeMarco, T. and Lister, T., Peopleware: Productive Projects and Teams, Dorset

House, New York, 1987.
Juran, J.M., Juran on Planning for Quality, The Free Press, A Division of

Macmillan, Inc., New York, 1988.
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Modeling
Eisner, H., Computer Aided Systems Engineering, Prentice-Hall, Englewood

Cliffs, NJ, 1988.
Hatley, D. J. and Pirbhai, I., Strategies for Real-Time System Specification, Dorset

House, New York, 1988.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-

Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.
Ward, P.T. and Mellor, S. J., Structured Development for Real-Time Systems,

Volume 1: Introduction and Tools, Yourdon Press (Prentice-Hall), Engle-
wood Cliffs, NJ, 1985.

Specialty areas
Baudin, M., Manufacturing Systems Analysis, Yourdon Press Computing

Series, (Prentice-Hall), Englewood Cliffs, NJ, 1990.
Hayes, R. H., Wheelwright, S. C., and Clark, K. B., Dynamic Manufacturing,

The Free Press A Division of Macmillan, Inc., New York, 1988.
Miller, J.G., Living Systems, McGraw Hill, New York, 1978.
Simon, H.A., Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.
Thome, B., editor, Systems Engineering: Principles and Practice of Computer-

Based Systems Engineering, John Wiley, Baffins Lane, Chichester, Wiley
Series on Software Based Systems, 1993.

Software
Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood Cliffs,

NJ, 1981.
Brooks, F. P., Jr., The Mythical Man-month, Essays on Software Engineering, 20th

Anniversary Edition, Addison-Wesley, Reading, MA, 1995.
Gajski, D. D., Milutinovic´, V. M., Siegel, H. J., and Furht, B. P., Computer

Architecture, The Computer Society of the IEEE, 1987 (tutorial).
Gamma, E. et. al., Design Patterns: Elements of Reusable Object-Oriented Software

Architecture, Addison Wesley, Reading, MA, 1994.
Deutsch, M. S. and Willis, R. R., Software Quality Engineering, Prentice-Hall,

Englewood Cliffs, NJ, 1988.
Software Productivity Consortium, ADARTS Guidebook, SPC-94040-CMC,

Version 2.00.13, Vols. 1-2, September, 1991. 
Shaw, M. and Garlan, D., Software Architecture: Perspectives on an Emerging

Discipline, Prentice-Hall, Englewood Cliffs, NJ, 1996.
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Appendix C

On defining architecture 
and other terms

This appendix is for those who need to come to a consensus in a group on
a definition for architecture or other major terms used in this book. There
are many who might have such a need, and for those who have a need this
appendix might be very useful. Deciding on formal definitions is commonly
part of setting up an official corporate training course, or documenting a
standard (public or corporate). In these situations an inordinate amount of
time can be spent arguing about fine details of definitions. It may be hard
to pick and choose among the definitions offered by different standards since
they usually do not record the reasoning that brought them to a decision.
This appendix is a record of some of the definition related discussions one
of the authors (Maier) has been involved in over several years. It is offered
to help others who need to arrive at a group consensus on definitions with
a ready-made set of choices and reasoning.

Defining “architecture”
One might think that, with 5000 years of history, the notion of architecture
in buildings would be clearly and crisply defined. Presumably then the
definition could be extended to give a clear and crisp definition to architec-
ture in other fields. However, this is not the case. A formal definition of
architecture is elusive even in the case of buildings. And if the definition is
elusive in its original domain, is it surprising that a wholly satisfactory
definition is elusive in more general domains?

The communities involved in architecture in systems, software, hard-
ware, and other domains have struggled with finding a formal definition.
Each group who has set out a formal definition has usually made a unique
choice. The choices are often similar, but reflect significantly different ideas.
The sections to follow review some of the more distinctive choices. Of course,
there are many small variations on each one.
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To make sense of the different definitions it is important to review them
with some criteria in mind. In reviewing these definitions try to answer the
following questions with respect to each definition:

1. How does the definition establish what is the concern of the architect
and what is not?

2. What is the purpose of the definition? Some purposes might be de-
fining an element of design, education, organizational survival or
politics, setting legal boundaries, or even humor.

3. Choose a building with which you are familiar. What is its architec-
ture, according to the definition? How well does the definitions im-
plied architecture match what you would expect to be the building
architect’s scope of work?

4. Choose a system with which you are familiar. What is its architecture,
according to the definition? What things are uniquely determined
about the system from the application of that definition?

5. What is the architecture of the Internet, according to the definition?

Webster’s dictionary definition

We begin with the dictionary’s definition.1

Architecture: 1. The art or science of building; specifi-
cally, the art or practice of designing and building
structures and esp. habitable ones. 2a. Formation or
construction as or as if the result of conscious act <the
~ of the garden> b. a unifying or coherent form or
structure <the novel lacks ~> 3. Architectural product
or work 4. A method or style of building 5. The manner
in which the components of a computer or computer
system are organized and integrated.

The interesting part of this definition, for our purposes, is part 2. The
first definition uses architecture in the sense of the profession, not what we
are looking for here. This definition say to speak of the architecture of a thing
is to speak of its “unifying or coherent form.” Unfortunately, it is not obvious
what aspect of form is “unifying or coherent.” It is something that can be
judged, but is hard to define crisply. The civil building example suggests
several other ideas about architecture:

1. Architecture is tied to the structure of components, but if a novel can
have an architecture the notion of components is relatively abstract.
Components may need to be interpreted broadly in some contexts.
No one would confuse the structure of a novel with its organization
into chapters — which is the “packaging” of that structure, and is

2000 CRC Press LLC



analogous to confusing the architecture of a system with its module
structure.

2. The distinction between an architectural level of description and some
other level of design description is not crisp. Architectural description
is concerned with unifying characteristics or style, while an engineer-
ing description is concerned with construction or acquisition.

3. In common use architecture can mean a conceptual thing, the work
of architects, and architectural products. Other definitions make
sharper distinctions.

This book

The definition of architecture given in the glossary of this book is

Architecture: The structure (in terms of components,
connections, and constraints) of a product, process, or
element

This definition is specific, it is talking about structure (although that term
is itself open to some interpretation). Components, connections, and con-
straints are the descriptive terms for architecture; and we can talk about the
architecture of a wide variety of things. This book is primarily about archi-
tecting, rather than architecture. The reason is that the most important con-
straints come from the process of doing the architect’s role. The most impor-
tant things come from working with clients to understand purpose and
limitations. Architecture should, by the tenets of this book, proceed from the
clients needs rather than a presupposed notion of what constitutes an archi-
tectural level definition of a system.

IEEE architecture working group (AWG)

After extended discussion in 1995-1996 in association with developing P1471
Recommended Practice for Architectural Description the IEEE Working
Group chose:

An Architecture is the highest-level concept of a system
in its environment.

“System” in this definition refers back to the official IEEE definition, “a
collection of components organized to accomplish a specific function or set
of functions.” This definition of architecture was intended to capture several
ideas.

1. An architecture is a property of a thing or a concept, not a structure.
The term structure is avoided specifically to avoid any connotation
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that architecture was solely a matter of physical structure. Concept,
which is obviously much more generic, is used instead.

2. The term highest-level is used to indicate that architecture is an ab-
straction, and that it is fundamental abstraction. A major defect of
this definition is that highest level carries a connotation of levels of
hierarchy, and in particular a single hierarchy, which is exactly one
of the connotations to be avoided. Also, “highest-level concept” leaves
a great deal of room for interpretation.

3. The definition says that architecture is not a property of the system
alone, but that the system’s environment must be included in a def-
inition of the system’s architecture. This has often been referred to as
“architecture in context” as opposed to “architecture as structure.” It
was there to capture the idea that architecture has to encompass
purpose and the relationship of the system to its stakeholders. The
reader must judge whether or not that interpretation is clear.

This definition was used in several drafts of the P1471 standard, but was
replaced in the final balloted version. The definition in the final balloted
version was

Architecture: the fundamental organization of a sys-
tem embodied in its components, their relationships to
each other and to the environment and the principles
guiding its design and evolution.

This definition is a refinement of definitions from the software engineer-
ing community, as discussed below. Those who don’t like it might be more
inclined to say it was a compromise between conflicting points of view that
suffers from the usual problems of a committee decision. The definition starts
with the software communities definitions (discussed shortly) and then adds
back some of the ideas of the original P1471 definition. The primary refine-
ment is the de-emphasis on physical structure and to say that architecture
is “embodied” in components, relationships, and principles. Put another
way, the definition tries to recognize that, for most systems, most of the time,
the architecture is in the arrangement of physical components and their
relationships; but, sometimes, the fundamental organization is on a more
abstract level.

INCOSE SAWG

The International Council on Systems Engineering (INCOSE) Systems Archi-
tecture Working Group (SAWG) adopted a definition for system architecture.
It could as well be read as a definition for “Architecture, of a system.” It reads:
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Systems architecture: The fundamental and unifying
system structure defined in terms of system elements,
interfaces, processes, constraints, and behaviors

This definition borrows the core of the dictionary definition that archi-
tecture represents fundamental, unifying, or essential structure. Exactly what
constitutes fundamental, unifying, or essential is not easily defined. It is
presumed that recognizing it is partially art and up to the participants. In
this definition the role of multiple aspects making up the architecture is made
explicit through the listing of elements, interfaces, processes, constraints, and
behaviors. This definition makes, or facilitates making, a sharper separation
between an architecture as a conceptual object, an architecture description
as concrete object, and the process or act of creating architectures (architect-
ing).

MIL-STD-498

MIL-STD-498, now canceled, had a definition of architecture that specifically
pertained to a designated development task.

Architecture: The organizational structure of a system
or CSCI, identifying its components, their interfaces,
and a concept of execution among them

Here architecture is described specifically in three parts, components,
interfaces, and a concept of execution. In this sense it supports the idea of
architecture as inherently multi-view, although it specifically defines the
views where others leave them open. The meaning of “organizational struc-
ture” as opposed to some other structure (conceptual, implementation,
detailed, etc.) is not made clear, although the idea is congruent to the com-
mon usage of architecture. It also uses “concept” within the definition, but
only in referring to execution. Like most definitions, it doesn’t clearly make
a distinction between architectural and design concerns.

This definition is also “structuralist” in the sense that it emphasizes the
structure of the system rather than its purposes or other relationships. One
could interpret the definition to mean that the architect was not concerned
with the systems purpose, that architecture came after requirements were
fully defined. In fact, that is exactly the interpretation it should be given, at
least in the way the associated standards envisioned the systems engineering
process executing.

The original IEEE definition (in IEEE 610.12-1990) is a shorter version of
this. It reads:

The organizational structure of a system or component
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Perry-Garlan

A widely used definition in the software community is due to Perry and
Garlan, although the exact place it first appeared is somewhat obscure.

Architecture: The structure of the components of a sys-
tem, their interrelationships, and principles and guide-
lines governing their design and evolution over time.

An almost identical definition is used as the definition of architecture in
the U.S. DoD C4ISR Architecture Framework, where it is incorrectly credited
to the IEEE 610.12 standard for terminology. This definition is another three-
part specification — components, interrelationships, and principles-guide-
lines. As this definition is commonly used, components and interrelation-
ships usually refer to physically identifiable elements. This definition is
mostly used in the software architecture community, and there it is common
to see components identified as code units, classes, packages, tasks, and other
code abstractions. The interrelationships would be calls or lines of inherit-
ance. 

The two basic objections to this definition are that it implies (if primarily
through use rather than the words) that architecture is the same as physical
structure, and that it makes no distinction in level of abstraction. The com-
mon usage of architecture is in reference to abstracted properties of things,
not to the details. The Perry-Garlan definition can presumably apply to the
structure of components at any level of abstraction. While applicability to
multiple levels is, in part, desirable, it is also desirable to distinguish between
what constitutes an architectural level description (whether of a whole sys-
tem or of a component) from descriptions at lower levels of abstraction.

Maier’s tongue-in-cheek rule of thumb

A slightly flip, but illustrative way of defining architecture is to go back to
what architects are supposed to do.

An architecture is the set of information that defines a
systems value, cost, and risk sufficiently for the pur-
poses of the systems sponsor.

Obviously, this definition reflects the issue back to architecting, when
the definition of architecture reflects back to architecture. The point of this
definition is that architecture is what architects produce, and that what
architects do is help clients make decisions about building systems. When
the client makes acquisition decisions, architecture has been done (perhaps
unconsciously, and perhaps very badly, but done).
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Internet discussion

One of the questions given at the beginning was “What is the architecture
of the Internet?” The point of the question is that no reasonable notion of
unifying, organizing, or coherent form will produce a physical description
of the Internet. The specific pattern of physical links is continuously changing
and of little interest. However, there is a very clear unifying structure, but
it is a structure in protocols. It is not even a structure in software components,
as exactly what software components implement the protocols is not known
even to the participating elements. The point about protocols being the
organizing structure of the Internet, and in particular the IP, was made in
Chapter 7 and Figure 7.1.

Summary

Those who must choose definitions have a lot to work with, probably more
than they would want. The precise form of the definition is less important
than the background of what architecture should be about. What architecting
should be was discussed at length in Chapter 1. The specifics of what archi-
tects will produce, that is what an architecture actually looks like, will differ
from domain to domain. Ideally, the definition for a given organization
should come from that knowledge — the knowledge of what is needed to
successfully define a system concept and take it through development. If the
organization has that knowledge it should be able to choose a formal defi-
nition that encapsulates it. If the organization does not have that knowledge
then no formal definition will produce it.

Models, viewpoints, and views
The terms model, view, and viewpoint are important in setting architecture
description standards, or architecture frameworks using the community ter-
minology of Chapter 11. The meaning of these terms changes from standard
to standard. The discussion below is intended to capture an argument for a
distinction between the two meanings. The distinction can be useful in
writing standards, though it is not important in writing architecture descrip-
tions, nor is it extensively used in this book.

Why do we need some organizing abstraction beyond just models?
Experience teaches that particular collections of models are logically related
by the kinds of issues or concerns they address. The idea of a view comes
from architectural drawings. In a drawing we talk about the top view or the
side view of an object in referring to its physical representation as seen from
a point. A view is the representation of a system from a particular point or
perspective. A view is a representation of the whole system with respect to
a set of related concerns. A viewpoint is the abstraction of many related
views, it is the idea of viewing something from “the front,” for example.
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A view need not correspond to physical appearance. A functional view
is a representation of a system abstracting away all non-functional or non-
behavioral details. A cutaway view shows some mixture of internal and
external physical features in a mixture defined by the illustrator. 

A view can be thought of both projectively and constructively. In the
projective sense a view is formed by taking the system and abstracting away
all the details unnecessary to the view. It is analogous to taking a multidi-
mensional object and projecting it onto a lower dimensional space (like a
viewing plane). For example, a behavioral view is the system pared down
to only its behaviors, its set of input to output traces.

In the constructive sense we build a complete model of the system by
building a series of views. Each represents the system from one perspective,
with enough the system should be “completely” defined. It is like sketching
a front view, a side view, a top view, and then inferring the structure of the
whole object. In more general systems, we might build a functional view,
then a physical view, then a data view, then return to the functional view,
etc. until a complete model is formed from the joint set of views. 

In practice it usually takes several models to represent that whole system
relative to typical concerns, at least for high technology systems. So, a view
is usually a collection of models. For example, physical representation seems
simple enough, but how many different models are needed to represent the
components of an information intensive system? A complete physical view
might need conventional block diagrams of information flow, block dia-
grams of communication interconnection, facilities layouts, and software
component diagrams.

Viewpoints are motivated noticing that we build similar views, using
similar methods, for many systems. By analogy, we will want to draw a top
view of most systems we build. The civil architect always draws a set of
elevations, and elevation drawings share common rules and structures. And
an information system architect will build information models using stan-
dard methods for each system. This similarity is because related systems
will typically have similar stakeholders, and these stakeholders find their
concerns consistently addressed by particular types of models and analysis
methods. Hence, a viewpoint can be thought of as a set of modeling or
analysis methods together with the concerns those methods address and the
stakeholders possessing those concerns.

Working definitions

These are summarizing definitions, augmented with the notions of consis-
tency and completeness. The concepts here refer to the P1471 information
model in Figure 11.1.

Model: An approximation, representation or idealization of selected
aspects of the structure, behavior, operation or other characteristics
of a real-world process, concept, or system (IEEE 610.12-1990).
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Viewpoint: A template, pattern, or specification for constructing a view
(IEEE 1471-2000).

View: A representation of a system from the perspective of related con-
cerns or issues (IEEE 1471-2000).

Consistency, of views: Two or more views and consistent if at least one
can exist that possesses the given views.

Completeness, of view: A set of views is complete if they satisfy (or
“cover”) all of the concerns of all stakeholders of interest.

Consistency and completeness

Given multiple views (like top, front, and side) of a physical object the ideas
of consistency and completeness are clear. A set of views is consistent if they
are abstractions of the same object. A little more generally, they are consistent
if at least one real object exists which has the given views. Consistency for
physical object and views can be checked through solid geometry. Figure
C.1 illustrates the point. The views are consistent if the geometrical object
produces them when project onto the appropriate subspace. Even without
the actual object we can perform geometric checks on the different views.

We can’t (yet) treat consistency in the same rigorous manner if the views
are functional and physical and of a complex system. As we describe more
complex views in the sections to come for systems it is useful to return to
the heuristic notion of consistency. Given a few models of a system being
architected, we say they are consistent if at least one implementation exists
which has the models as abstractions of itself. 

Completeness can also be heuristically understood through the geomet-
ric analogy. Suppose we have set of visual representations of a material
object. What does it mean to claim that the set of representations (views) is
“complete?” Logically, it means that the views completely define the object.
But, any set of external visual representations can only define the external
shape of the object, it can’t define the internal structure, if any. This trivial
observation is actually extremely important for understanding architecture.
No set of representations is ever truly complete. A set of representations can
only be complete with respect to something, say with respect to some set of
concerns. If the concerns are an external shape, then some set of external
visual representations can be complete. If the concerns are extended to
include internal structures, or strength properties, or weight, or any number
of other things then the set of views must likewise be extended to be “com-
plete.”

Notes and references
1. Merriam Webster’s Collegiate Dictionary, Tenth Edition, p. 61.
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Figure C.1  For physical objects and views consistency is a matter of geometry. For
systems and more complex views it does not (yet) have the same rigorous grounding.

Consistency of a front, top,
and perspective view can be
grounded in geometry
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Glossary

The fields of system engineering and systems architecting are sufficiently
new that many terms have not yet been standardized. Common usage is
often different among different groups and in different contexts. However,
for the purposes of this book, we have provided the meanings of the following
terms:

Abstraction A representation in terms of presumed essentials, with a cor-
responding suppression of the non-essential.

ADARTS Ada-based Design Approach for Real Time Systems. A software
development method (including models, processes, and heuristics)
developed and promoted by the Software Productivity Consortium.

Aggregation The gathering together of closely related elements, purposes,
or functions.

Architecting The processing of creating and building architectures.
Depending on one’s perspective, architecting may or may not be seen
as a separable part of engineering. Those aspects of system development
most concerned with conceptualization, objective definition, and certifi-
cation for use.

Architecture The structure — in terms of components, connections, and
constraints — of a product, process, or element.

Architecture, open An architecture designed to facilitate addition, exten-
sion, or adaptation for use.

Architecture, (communication, software, hardware, etc.) The architecture
of the particular designated aspect of a large system.

Architectural style A form or pattern of design with a shared vocabulary
of design idioms and rules for using them (see Shaw and Garlan, 1996,
p. 19).

ARPANET/INTERNET The global computer internetwork, principally
based on the TCP/IP packet communications protocol. The ARPANET
was the original prototype of the current INTERNET.

Certification A formal, but not necessarily mathematical, statement that
defined system properties or requirements have been met.

Client The individual or organization that pays the bills. May or may not
be the user.

Complexity A measure of the numbers and types of interrelationships
among system elements. Generally speaking, the more complex a sys-
tem, the more difficult it is to design, build, and use.
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Deductive reasoning Proceeding from an established principle to its appli-
cation.

Design The detailed formulation of the plans or instructions for making a
defined system element; a follow-on step to systems architecting and
engineering.

Domain A recognized field of activity and expertise, or of specialized
theory and application.

Engineering Creating cost-effective solutions to practical problems by
applying scientific knowledge to building things in the service of man-
kind (Shaw and Garlan, 1996, p. 6). May or may not include the art of
architecting.

Engineering, concurrent Narrowly defined (here) as the process by which
product designers and manufacturing process engineers work together
to create a manufacturable product.

Heuristic A guideline for architecting, engineering, or design. Lessons
learned expressed as a guideline. A natural language abstraction of
experience which passes the tests of Chapter 2.

Heuristic, descriptive A heuristic that describes a situation.
Heuristic, prescriptive A heuristic that prescribes a course of action.
IEEE P 1220 An Institute of Electrical and Electronic Engineers standard

for system engineering
Inductive reasoning Extrapolating the results of examples to a more gen-

eral principle
Manufacturing, flexible Creating different products on demand using the

same manufacturing line. In practice, all products on that line come from
the same family.

Manufacturing, lean An efficient and cost-effective manufacturing or pro-
duction system based on ultraquality and feedback. See Womack et al.,
1990.

MBTI Meyer-Briggs Type Indicator. A psychological test for indicating the
temperaments associated with selected classes of problem solving. See
Meyers, Briggs, and McCaulley, 1989.

Metaphor A description of an object or system using the terminology and
properties of another. For example, the desktop metaphor for comput-
erized document processing.

MIL-STD Standards for defense system acquisition and development.
Model An abstracted representation of some aspect of a system.
Model, satisfaction A model which predicts the performance of a system

in language relevant to the client.
Modeling Creating and using abstracted representations of actual systems,

devices, attributes, processes, or software.
Models, integrated A set of models, representing different views, forming

a consistent representation of the whole system
Normative method A design or architectural method based on “what

should be,” that is, on a predetermined definition of success.
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OMT Object Modeling Technique. An object-oriented software develop-
ment method. See Rumbaugh et al., 1991

Objectives Client needs and goals, however stated.
Paradigm A scheme of things, a defining set of principles, a way of looking

at an activity, for example, classical architecting.
Participative method A design method based on wide participation of

interested parties. Designing through a group process.
Partitioning The dividing up of a system into subsystems.
Progressive design The concept of a continuing succession of design activ-

ities throughout product or process development. The succession pro-
gressively reduces the abstraction of the system through models until
physical implementation is reached and the system used.

Purpose A reason for building a system.
Rational method A design method based on deduction from the principles

of mathematics and science.
Requirement An objective regarded by the client as an absolute; that is,

either passed or not.
Scoping Sizing; defining the boundaries and/or defining the constraints

of a process, product, or project.
Spiral A model of system development which repeatedly cycles from func-

tion to form, build, test, and back to function. Originally proposed as a
risk-driven process, particularly applicable to software development
with multiple release cycles.

System A collection of things or elements which, working together, pro-
duce a result not achievable by the things alone.

Systems, builder-architected Systems architected by their builders, gener-
ally without a committed client.

Systems, feedback Systems which are strongly affected by feedback of the
output to the input.

Systems, form first Systems which begin development with a defined form
(or architecture) instead of a defined purpose. Typical of builder-archi-
tected systems.

Systems, politicotechnical Technological systems the development and
use of which is strongly influenced by the political processes of govern-
ment.

Systems, sociotechnical Technological systems the development and use
of which is strongly affected by diverse social groups. Systems in which
social considerations equal or exceed technical ones.

Systems engineering A multidisciplinary engineering discipline in which
decisions and designs are based on their effect on the system as a whole.

Systems architecting The art and science of creating and building complex
systems. That part of systems development most concerned with scop-
ing, structuring, and certification.

Systems architecting, the art of That part of systems architecting based on
qualitative heuristic principles and techniques; that is, on lessons
learned, value judgments, and unmeasurables.

2000 CRC Press LLC



Systems architecting, the science of That part of systems architecting
based on quantitative analytic techniques; that is on mathematics and
science and measureables.

Technical decisions Architectural decisions based on engineering feasibil-
ity.

Ultraquality Quality so high that measuring it in time and at reasonable
cost is impractical. (See Rechtin, 1991, Chap. 8)

Waterfall A development model based a single sequence of steps; typically
applied to the making of major hardware elements.

Value judgments Conclusions based on worth (to the client and other
stakeholders).

View A perspective on a system describing some related set of attributes.
A view is represented by one or more models.

Zero defects A production technique based on an objective of making
everything perfectly. Related to the “everyone a supplier, everyone a
customer” technique for eliminating defects at the source. Contrasts with
acceptable quality limits in which defects are accepted providing they
do not exceed specified limits in number or performance.
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