A Better Brew

Benefits of Applying Systems Engineering in the Beer Industry

Tim Heath 18 April 2018

Key Talking Points

- Brewing equipment design concepts
- Applying SE to HW-centric platforms
- Applying SE in a nontraditional domain where most aren't familiar with it

Speaker Bio

- Education/Certifications:
 - BS Mechanical Engineering Technology
 - Southern Polytechnic State University 2005
 - MS Systems Engineering
 - Johns Hopkins University 2013
 - INCOSE CSEP 2011
- Work Experience
 - Northrop Grumman Mechanical/Systems Engineer 2005 to 2014
 - Fairhope Brewing Co Head Brewer 2014 to 2016
 - Diamondback Brewing Co Brewing Consultant 2016
 - Premier Stainless Systems Director of Engineering 2017 to present

About Premier Stainless

- Founded in 2000
- Core product lines:
 - Brewhouses
 - Tanks
 - Keg washers
 - Brewery support equipment
- International customer base

Core Products: Tanks & Support Equipment

Core Products: Brewhouses

Core Products: Brewhouses

Core Products: Brewhouses

Engineering Process Overview

Overarching Design Parameters

- System must efficiently produce wort via the standard brewing process
 - BH efficiency reducing waste and reducing ingredients
 - Times required to complete each brewing step
 - Repeatability
 - Ease of use
- Tanks capacities, jacket pressures, insulation, ventilation
- In this context customers somewhat view our brewhouse design as a black box
- Difficult to quantify as the customer's expectation because these parameters are driven by their experience level and preferred brewing process

Layout Development

- Begin with equipment set defined by final quote
 - V&V paradigm are we building the right thing
- Receive building details from customer
- Create 3D models to ensure all equipment will fit
- Organize equipment layout
 - Plan for process flow and look at future expansion
 - Account for infrastructure
 - Account for aesthetics

Detail Design

- Start with base design from legacy system
- Customize port layouts to match physical equipment layout
- Add any customer-requested upgrades or customizations
- Create manufacturing drawings and process piping diagrams

Equipment Description	P1	P2	P3	P4	P5	NATACUS			
1088L Brewhouse - 3 Vessel	5254	3400	2177	2812	3098		BRE	WERY	
	G1	G2	G3	G4	G5				
1088L Orist Case with Orain Cracker	1282	977	1000	1576	2211				
Tank Description	Tank Diameter	Tank Height	Leg to Leg Diameter	Leg to Leg Width	Leg Diameter	Foot Pad Diameter	Gross Volume (hL)	Empty Weight (kg)	Full Weigh (kg)
1088L Mash/Lauter Tun	1664	2281	1347	962	108	160	14.08	329	1738
1088L Keffle	1654	2278	1350	955	108	150	17.72	272	2045
1088L Whirlpool	1664	2167	1230	870	108	150	16.90	272	1867
2088L Hot Liquor Tank	1424	2973	1198	847	108	200	27.50	457	3406
2088L Cold Liquor Tank	1424	2973	1198	847	108	200	27.60	469	3406
1088L Fermenter	1334	2590	1140	820	108	150	16.30	459	1990
2088L Fermenter	1524	3204	1340	962	108	200	28.43	429	3526
1088L Brite Tank	1134	2353	917	648	87	150	13.40	417	1781
2088L Britle Tank	1434	2983	1198	847	108	200	29.26	618	3589
100	r od Sismeler		z				2.7	lec d length measurements in suck trall weight based upo obstree with water (100.2 kg	n lank lilled to gross (thi).
4 Leg Tank			T					ank height do not accour uch as gear drives or proc ustom footpods can be so letaled drawings are requi completion. Some designs additional costs.	

Interface Definition

- Equipment utility requirements
 - Power
 - Plumbing
 - Steam
 - Gas
- Equipment physical specs
- Applicable cut sheets
- For overall brewery construction effort we're just one equipment provider
 - 3rd party is responsible for official set of MEP drawings
 - We're just a part of a SoS

System V&V

- Production QC
 - BOM validation
 - QC as-built equipment
 - Automated BH system-level control testing
- Deployment & On-site testing/training
 - Reassembly and integration with building infrastructure
 - Full system testing verification
 - Training & first brews validation

Takeaways

- Interface definition and control are critical
- With hardware design changes become exponentially more expensive the later in the process they occur
- SE in this type of environment requires additional effort and diligence as the engineer has to perform the role of the customer as well
- Process tailoring and agility is key to maintaining short development cycles
 - Re-use and standardized designs ease schedule pressures

