

Model-Based Systems Engineering: A Practical Approach

INCOSE San Diego

25 September 2019

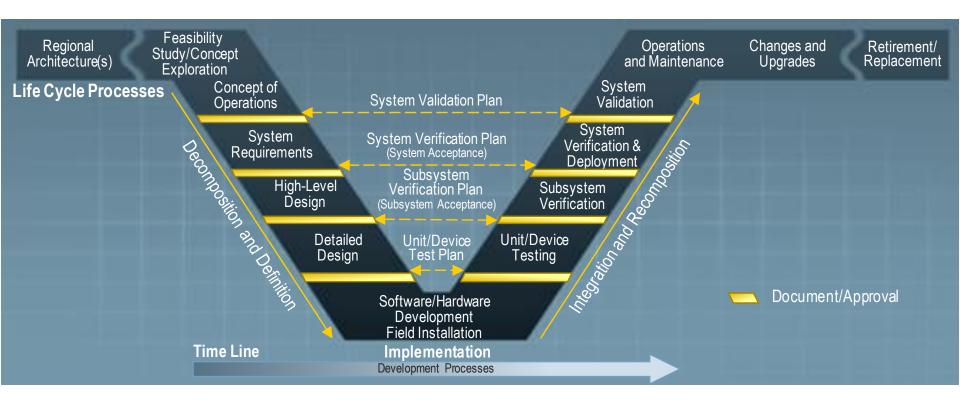
Charles H. Patton CSEP, DTM

Copyright © 2019 by Charles H. Patton All Rights Reserved Permission granted to INCOSE to publish and use

- Why invoke Model-Based Systems Engineering?
- What is Model-Based Systems Engineering?
- What we did on the Surrogate SATCOM IRaD
- What should you do?

The Perception?

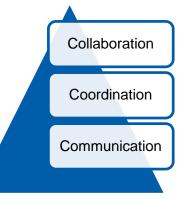
"Process is not the enemy – bad process is."


Toward Agile Systems
 Engineering Processes,
 Turner, CrossTalk April 2007)

Practicality Needn't Be Cumbersome

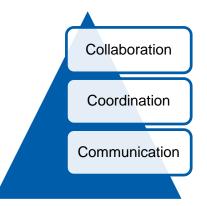
Why

• Systems Engineering V Model



Why (cont.)

- Communication
 - Common understanding
 - What the system is supposed to do
 - · What the system parts are called
 - Normalized terminology
 - · How the system is configured
 - Define subsystems and components
 - Identify interfaces
 - Logical and Physical
- Coordination
 - Multiple engineering efforts
 - Who's developing which parts of the system
 - Accommodate changes

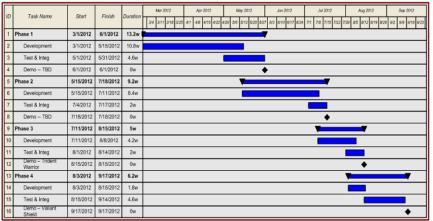


Why (cont.)

- Collaboration
 - Develop models
 - Requirements: CONOPS, COIs, Missions, etc.
 - Architecture: OV1, Block Diagrams, Data Flows, Drawings, etc.
 - Operation: Mock-ups, Test and Demo plans, etc.
 - From different points of view
 - Business Development
 - Hardware
 - Software
 - Cybersecurity
 - Test
 - Deployment
 - Sustainments, Logistics, Operations and Maintenance

We see things differently

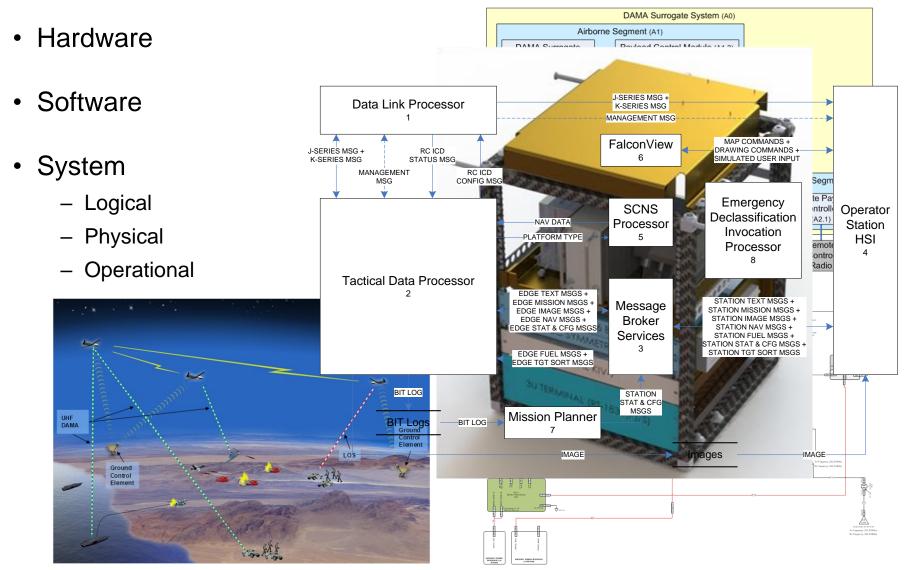
What



- Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases
- A model is an approximation, representation, or idealization of selected aspects of the structure, behavior, operation, or other characteristics of a real-world process, concept, or system, i.e. an abstraction
- A model usually offers different views in order to serve different purposes
 - A view is a representation of a system from the perspective of related concerns or issues

What – Model Examples

- Video games
- Weather maps
- Schedules
- Simulators
- Test Configurations



What - View Examples

How

- Operational
 - CONOPS, Missions
 - COIs, MOEs, MOPs
 - OV1
 - Requirements
 - Test and Demo Plans
- Functional
 - Decomposition
 - Data Flow Diagrams
 - Use Cases

- Logical
 - Context Diagrams
 - Architecture Block Diagram
 - Interconnect Diagrams
 - Architecture Flow Diagrams
- Physical
 - Product Entity Diagram
 - Drawings
 - Equipment Configuration Diagrams
 - Checklists

Capture the Thinking

How – Operational

- CONOPS, Missions
- COIs, MOEs, MOP
- OV1
- Requirements

SYS Tag

SYS8

SYS9

SYS10

SYS11

C

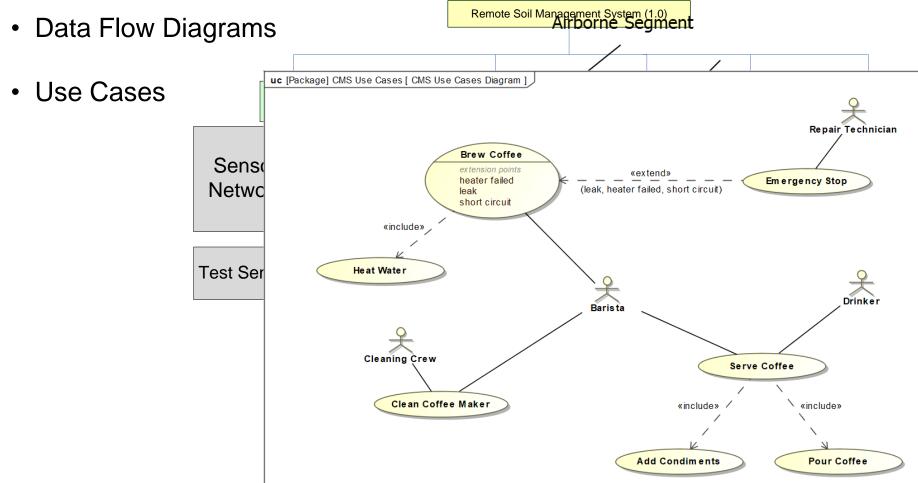
Th

CO

ра

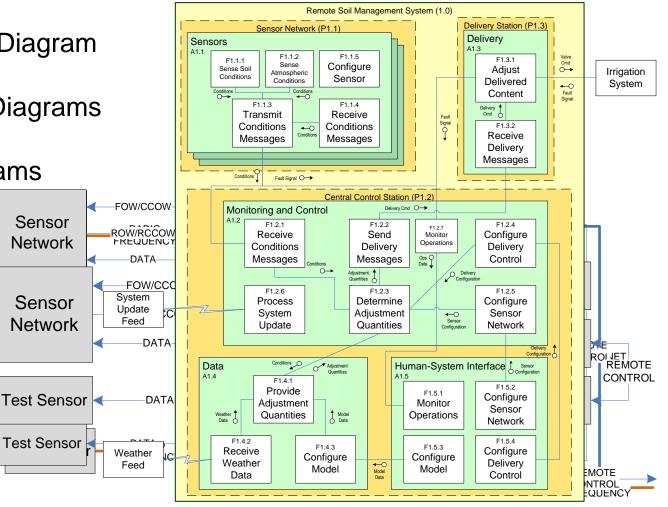
We

fur

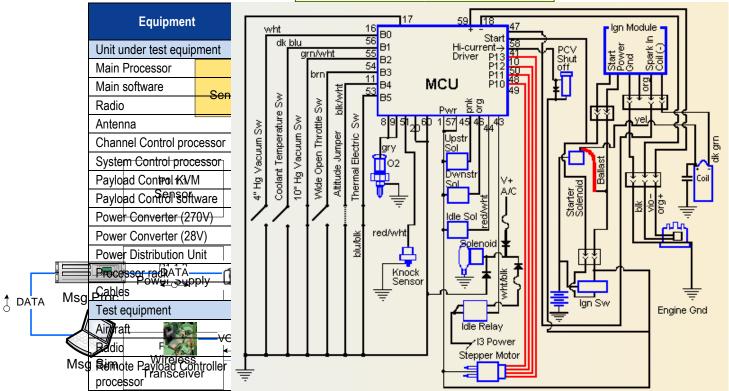

CO

Test and Demo P

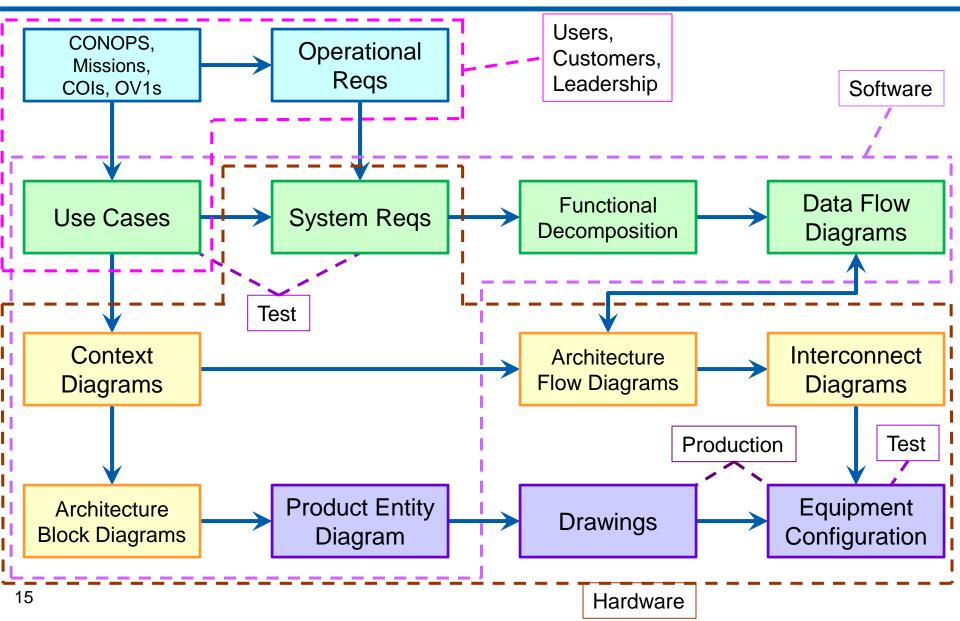
MOEs, MOPs	-	100				
	MONTO THE	THE R. S. S.	-	-	-	-
		COI ncrease crop yield for f time and material	MOE			МОР
nd Demo Plans	S 1.1 ** 1 1 1 Objective 3.2	Demonstrate excha	Crop yields compared yields under similar co	onditions	Annual crop yie	eld eladheagasor network.
Requirem	Entry Criteria	Scenario dry run con Transmission load si Test readiness revie	mpleted. Imwator calibrated.	Req ID SYS.OP.010	Criticality KPP	Verification Method Test
Con an an and an deal marks da	Exit Criteria	gby test engineer	m sensor, data received or data transmission, sin		station for post	-processing and verified
The RSMS shall deliver soil and salinity levelers based o system settings designated b	Test Scenarios	3Scenario 141251 Scenario 2: 5 kl	HZ Tx in sensor networ Hz Tx in sensor networ	rkSYS.OP.020 k	KPP	Test
The RSMS shall monitor the the soil with emphasis on wa maintain optimum levels for	Test Output Data Data Analysis	System configuration Message latency: D	Determine average elap receipt of the sensor dat	SYS.OP.030 sed time between		Test sensor data from the
structure and crop type. The RSMS shall deliver or v	butu Analysis		Sensor data transmitted			Test


• Decomposition

How – Logical


- Context Diagrams
- Architecture Block Diagram
- Architecture Flow Diagrams
- Interconnect Diagrams

- Product Entity Diagram
- Drawings
- Equipment Configuration Diagrams


Remote Soil Management System (1.0)

Checklists

Tie It All Together

Questions

Document and review the system development plan

- SEMP or SEIT Plan (what, who, when)
- Document and review system operational concepts
 - CONOPS
 - Missions
 - OV1s
 - COIs, MOEs, MOPs
- Identify, document, and review operational requirements
- Describe, document, and review the system functionally
 - Functional Decomposition
 - Data Flow Diagrams
 - Use Cases

Identify, document, and review system requirements

Describe, document, and review the system at the logical level

- Context Diagrams
- Architecture Block Diagrams
- Interconnect Diagrams
- Architecture Flow Diagrams
- Describe, document, and review the system physically
 - Product Entity Diagrams
 - Drawings
 - Equipment Configuration Diagrams
- Document and review system test and demo plans and procedures
- Create and use checklists

Know Your Audience

INCOSE International Council on Systems Engineering