Cyber Injection
Points in the

DevOps CI/CD
Pipeline

Keith Conway
28July2021

Cyber Injection Points in the DevOps CI/CD Pipeline

e Continuous Integration (Cl)

e Continuous Deployment (CD)

* Development to Operations (DevOps)

* Cyber — very generic term that will not be answered today

* My role is to identify and document cyber related best practices that
could be used as a starting point for new programs or incorporated
into existing programs. (slide 22)

DevOps overview picture

— 4 5
.pre Build Unit tests 1 Code quality 2 Build image 3 Deploystaging ~ E2ETests Release
@) =i c ® (5] @ (3]) sece c ® c ® c () szzem % @) ez
) o5 c (&) urttess c @) sons (] ® (% () retes
© c ® e

1. Unit Test

2. Code Quality
3. Build Image

4. Deploy Staging
5. E2E Tests

6. Release

Automated Unit Tests

* Automated Unit Tests - In computer science, test coverage is a
measure used to describe the degree to which the source code of a
program is executed when a particular test suite runs. A program with
high test coverage, measured as a percentage, has had more of its
source code executed during testing, which suggests it has a lower
chance of containing undetected software bugs compared to a
program with low test coverage.

e Atlassian is quoted — ‘it is generally accepted that 80% coverage is a
good goal to aim for.

enyg yelsgs

et

Automated Unit Test

Unit tests are performed on individual classes and methods to
ensure that they properly satisfy their APl contracts with other
classes. At this level, unit tests must be tested as isolated units
without any interaction or dependency on other classes or
methods. Unit tests are typically written by the developers
themselves to verify the behavior of their code.

https://owasp.org/www-pdf-archive/AutomatedSecurityTestingofWebApplications-
StephendeVries.pdf

https://owasp.org/www-pdf-archive/AutomatedSecurityTestingofWebApplications-StephendeVries.pdf

Automated Unit Test - Cyber

Input Validation:

When testing security functionality it is important that both
valid input is accepted (a functional requirement), and also that
invalid and potentially dangerous data is rejected. Testing

boundary and unexpected conditions is essential for security
tests.

et

80%

Automated Unit Test

* OWASP top 10 that are tied to input validation:

° #1
° #4
° #7/
* #8

Injection
XML external entities

(XXE)

Cross Site Scripting (CSS)

Insecure Deserialization

T10

OWASP Top 10 Application
Security Risks — 2017

Injection flaws, such as SQL, OS, XXE, and LDAP injection occur when untrusted data is sent to an

~\ £

A2 - Broken

Session
Management

A3 - Cross-Site
Scripting (XSS)

A4 - Broken Access
Control

AS - Security
Misconfiguration

A6 - Sensitive Data
Exposure

\, —
A7 - Insufficient
Attack Protection

A8 - Cross-Site
Request Forgery
(CSRF)

A9 - Using
Components with
Known

/,

Authenticationand |

——

P as part of a ¢ d or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without proper authorization.

Application functions related to authentication and session ment are often irr
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users’ identities (temporarily or permanently).

XSS flaws occur whenever an application includes untrusted data in a new web page without
proper validation or escaping, or updates an existing web page with user supplied data using a
browser API that can create JavaScript. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

Restrictions on what authenticated users are allowed to do are not properly enforced. Attackers
can exploit these flaws to access unauthorized functionality and/or data, such as access other
users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, platform, etc. Secure settings
should be defined, implemented, and maintained, as defaults are often insecure. Additionally,
software should be kept up to date.

Many web applications and APIs do not properly protect sensitive data, such as financial,
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as
encryption at restorin transit, as well as special precautions when exchanged with the browser.

The majority of applications and APIs lack the basic ability to detect, prevent, and respond to
both manual and automated attacks. Attack protection goes far beyond basicinput validation
and involves automatically detecting, logging, responding, and even blocking exploit attempts.
Application owners also need to be able todeploy patches quickly to protect against attacks.

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim's session cookie and any other automatically included authentication information, to a
vulnerable web application. Such an attack allows the attacker to force a victim's browser to
generate requests the vulnerable application thinks are legitimate requests from the victim.

Components, such as libraries, frameworks, and other software modules, run with the same
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate
serious data loss or server takeover. Applications and APIs using components with known

A10-
Underprotected
APIs

N
L ilities)

| bilities may application defenses and enable various attacks and impacts.

Modern applications often involve rich client applications and APIs, such as JavaScript in the
browser and mobile apps, that connect to an APl of some kind (SOAP/XML, REST/JSON, RPC,
GWT, etc.). These APIs are often unprotected and contain numerous vulnerabilities.

Automated Unit Tests

e Questions?

Code Security / Static Code Analysis

e Stop the leak

e Water Leak Changes the Game for Technical Debt Management (sonarsource.com)

* High Level Overview — stop rule violating code from being checked into the
repository.

* Addressing rule violating code that is already checked in is a different task.

* The main point is to discuss a security gate or a analysis to be required for a
peer review.

\\\\\\\\\\\\\\\

https://blog.sonarsource.com/water-leak-changes-the-game-for-technical-debt-management

Code Security / Static Code Analysis

- Master

- The holy grail aka Production
« Hotfix

- maintenance outside of dev

- Release
- ready for UAT

- Develop
- main development stream

- Feature
-~ individual feature / story

Code Security / Static Code Analysis

1. Quality Gate
* Automated way to stop rule violating code from
* Being checked into the repo.

:

2. Peer Review

s — s
- — . _The holy grail aka Production - -
Hotfi [master @
\\\\\\\\\\\\\\\ <, -
maintenance outside of dev \I O/‘ T
Qe 0 Q) 0) 0 0 ® Release S— \
rrrrrrrrrr Acicase >
0 0 0 Qs 0 Develop P Y Lale s N
main development strea m - “'—'}\“\—/ /"'—/
@ ® Feature [Featurs l O->0
||||||||||||||||||||| ry
= @->0->0->®

Code Security / Static Code Analysis

* Any questions on the static code analysis process?

Build Image / Deploy Staging / Release

.pre Build Unit tests Code quality Build image Deploy s

@ eni c ® c) i c () gependency chec{ S ® c) sec c @) c2etess c

@)tz c &) s c () sonar C ® (%
@ wr c

eeeeeee

Build Image: (Development)
Deploy Staging: (Integration)
Release: (Operations)

Infrastructure as Code

 What is Infrastructure as Code? - Azure DevOps |
Microsoft Docs

* Environment drift — maintain the settings of individual
deployment environments — becoming a snowflake —
a unique configuration.

* With snowflakes, administration and maintenance of
infrastructure involves manual processes which are hard
to track and contributed to errors.

https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code#:~:text=Idempotence%20is%20a%20principle%20of%20Infrastructure%20as%20Code.,same%20configuration%2C%20regardless%20of%20the%20environment%27s%20starting%20state.

JevOps Concepts: Pets vs. Cattle

@Joachim8675309

Infrastructure as Code

* |[dempotence is a principle of Infrastructure as Code.
ldempotence is the property that a deployment
command always sets the target environment into the
same configuration, regardless of the environment’s

starting state.
* [dempotency is achieved by either automatically
configuring an existing target or by discarding the existing
target and recreating a fresh environment.

Hardened Operating System

 Hardened Operating System can be used by Development, different
levels of Integration, and Operations.
 Hardened VM can be copied to different areas: Dey, Int, Ops

* Hardened Operating System will be versioned and can be used for either
VM/container or bare metal : Dev, Int, Ops

* Hardening via STIGs: will need to confirm that each environment is consistent:
Dey, Int, Ops

_—~MINIMUM

DevOps Hardened VM Deployment

*Pets are given names like
pussinboots.cern.ch

*They are unique, lovingly hand raised
and cared for

*When they get ill, you nurse them back to
health

«Cattle are given numbers like

! vmO0042.cern.ch

k <They are almost identical to other cattle
*When they get ill, you get another one

During a schedule a new hardened VM can be pushed to: Dey, Int, Cloud, Ops. Schedule could be 7, 15, 30,

60, 90 day.
Automated script used to install/configure service on new hardened VM.
Automated installation script developed / configured / tested on Dev/Int network — alleviates manual one

time configurations at Release site (Snowflake vs Idempotent).

Hardened Operating System
Cl/CD DevOps Pipeline f

* Pros:
* No upstream configuration issues as each phase of dev / test is using same
operating system
e Can be used for third party integrators as well

* * No ownership of machine — which can be changed out when a new
configuration managed operating system is generated.

* Cons:
* Generating configuration managed operating system takes time to develop
* Development is slower because operating system changes go through change
control board

* * No ownership of machine — which can be changed out when a new
configuration managed operating system is generated.

P
TRAUA
») .4,' ,

! v it
2 B [,) e .
% L , ‘.l] "
Al ‘ il
g o Maabam e
S S St o ARG 2 e f

v
1 oy ‘..')“

Build Image

.pre Build Unit tests Code quality Build image Deploy staging E2E Tests Release

@ m o @) @ o @ fep C @ m %] @ deploy staging (%] @ eZe tests o @ relezse m
@ < @ c @ sonz o @ s’ @ .
O, c ®

Build Image: (Development) This is where the software build is installed on an approved hardened

operating system image via an automated script.

* Hardened operating system could be a VM, a container, or a operating system installation disk (gold
image)

We will need to have the approved hardened operating system image available via a repository.

We will need to identify what type of script language to use to install the software service.

Deploy Staging

.pre Build Unit tests Code quality Build image Deploy staging E2E Tests Release

@ m o @) @ o @ fep C @ m %] @ deploy staging (%] @ eZe tests o @ relezse m
@ < @ c @ sonz o @ s’ @ .
O, c ®

Deploy Staging: (Integration) This is where the software build (application or service) is installed on a
approved hardened VM image via an automated script.

The software build and automated script are supplied — the hardened VM needs to be part of an
integration server (not owned by the software developer).

Deploy Staging and E2E Tests

.pre Build Unit tests Code quality Build image Deploystaging = E2ETests QR Release

@ e c @ s) @ i 8] @) cece c ® c ® @) @) epetess c @ res

) s c) unts c () sonsr 3] ® cen C @) ree
© s o ® =

E2E Tests: End to End
Could be an automated test to pass a security requirement.

&) OLUASP

Open Web Application
Security Project

OWASP ASVS

https://owasp.org/www-project-application-security-verification-standard/

Security architecture has almost become a lost art in many organizations.
The days of the enterprise architect have passed in the age of DevSecOps.
The application security field must catch up and adopt agile security
principles while re-introducing leading security architecture principles to
software practitioners. Architecture is not an implementation, but a way of
thinking about a problem that has potentially many different answers, and
no one single "correct" answer. All too often, security is seen as inflexible
and demanding that developers fix code in a particular way, when the
developers may know a much better way to solve the problem. There is no
single, simple solution for architecture, and to pretend otherwise is a
disservice to the software engineering field.

https://owasp.org/www-project-application-security-verification-standard/

OWASP ASVS

* The primary aspects of any sound security
architecture:
* Availability
e Confidentiality
* processing integrity
* non-repudiation
* privacy.

OWARSH

Open UWeb Application
Security Project

Release

-pre Build Codegualty = Buildimage ~ Deploystaging ~ E2ETests ~ J Release

@ = c © c © c () secensency crees © © c © c () =zetess c ®

@ e c @ wittests c @ sns % @ o © rees
@ c ® ==

Release: (Operations) This is when the VM/Container
created from the Deploy Staging phase is transitioned to
operations.

Thank you — Keith Conway

e Questions?

Keith Conway i
Keith is a lifelong learner and has always been interested in understanding

the bigger picture. He has a BS in Computer Science from SDSU and an MBA
from a local university in San Diego, Alliant International Univ.

* Cyber certifications include Certified Information Systems Security
Professional (CISSP), Certified Ethical Hacker (CEH), Security+, and a
certified pentester (penetration tester) through Offensive Security (OSWP).

* Programming certifications include Oracle Java Developer and Amazon
Web Services (AWS) Cloud Solutions Architect.

* INCOSE Certified Systems Engineering Professional (CSEP) and has served
two years on the INCOSE San Diego board of directors.

