

The Benefits of a Requirements Verification Architecture Model

... or How to Tie the Left and Right Sides of the Life Cycle V-Model Together

Charley Patton, CSEP Systems Engineer

September 21, 2022

What You're About to See

- Why you want a Requirements Verification Architecture Model (RVAM)
- What makes up the RVAM
- How to create the RVAM
- Q&A

WHY You Want the RVAM

- Horizontal Integration: Increases coordination across development life cycle stages earlier
- Vertical Integration: Reinforces need for top-down requirements and architecture development
 - Typical Req ←→ Test traces may be insufficient
 - Increases collaboration among SE, I&T, and Development teams
- Model-based visual artifacts

WHAT the RVAM Parts Are

Structure

- Model elements are:
 - Either inputs from system model
 - or generated specifically for RVAM

Input Artifacts: from Req and Arch development

- System Functions
- System Requirements
- System Architecture
 - Physical Entity Decomposition

Input Artifacts: from Verification development

- Verification Requirements (VRs)
 - Description/Objective
 - Method (e.g., Test, Demonstration, Analysis, Inspection/Examination)
 - Preconditions/Environment
 - Procedure
 - Success Criteria
- Verification Cases (VCs)
 - Verification environment
 - Verification inputs and outputs
 - Data collection method
- Verification Plans (VPs)
 - Verification environment
 - Verification configuration
 - Resources
 - Exercised Verification Cases

«Verification_Requirement» Temperature -- Just-Brewed Coffee

Description = "Perform test to determine if CMS heats water to desired

Preconditions = "CMS is connected to facility power

Water reservoir is filled to maximum capacity

Procedure = "Execute 'Brew Coffee' use case

Measure just-brewed coffee temperature in Receptacle at the end of the brew cycle Compare measured just-brewed coffee temperature to specified just-brewed

Success Criteria = "Just-brewed coffee temperature achieves temperature in specified just-brewed coffee temperature range"

Verification Method = Test

«Verification Requirement» Temperature -- Held Coffee

Description = "Determine if CMS holds brewed coffee temperature in specified

Preconditions = "CMS is attached to facility power

Brew cycle has completed successfully'

Procedure = "Measure held coffee temperature in the receptacle after specified

Compare measured held coffee temperature to specified held coffee temperature" Success Criteria = "Held coffee temperature is maintained in specified held coffee temperature range"

Verification Method = Test

«Verification_Requirement» Reservoir Volume

Preconditions = "Reservoir design has been baselined"

Procedure = "Inspect Reservoir baselined design to determine if as-designed volume meets specified maximum volume"

Success Criteria = "Reservoir as-designed volume meets specified Reservoi

Verification Method = Inspection

«Verification_Requirement»

Receptacle Volume

Description = "Determine if Receptacle has enough volume to contain water released from Reservoir when Reservoir has been filled to maximum specified

Preconditions = "Reservoir design has been baselined

Receptacle design has been baselined"

Procedure = "Compare as-designed Receptable volume to as-designed

Success Criteria = "Receptacle as-designed volume meets specified Receptacle

Verification Method = Inspection

Test Plan

Input Artifacts: from Verification development

- Data Objectives (DOs)
 - What data must be collected, the collection method, and data analysis description
- Data Analysis Plans (DAPs)
 - How data will be analyzed to determine verification success of the system requirements
- Data Pools (DPs)
 - Where the data inputs and outputs will be managed (e.g., DOORS for requirements, CM tool for plans)

- Dashboards
 - Content diagrams
- Tables and Views
 - Requirements Traceability Matrices (e.g., RVTM)
 - $-Reqs \leftrightarrow VEP$
 - -VEP ←→ VCs
 - -VCs ←→ DAPs
 - -etc.

ŧ	Id	Name	Text	Verify Method	▽ Refined By	Satisfied By	Derived From	Verified By
1	1		The CMS shall heat water from room temperature to 185F within 1 minute.	Test	Heat Water	Heater		Measure Temperature Rise VEP Temp Test
2 2	2	2 Reservoir Volume	The CMS shall contain 6 cups of water.				■ 1 Heat Water	
3 3	3	3 Remove Grounds	The CMS shall remove grounds from brewed coffee.	Demonstration		Filter		

WHY WHAT HOW

- Verification Execution Plan (VEP)
 - Verification and Analysis activity flow
- System Under Test (SUT)
 - Tested system components shown in test configuration

- Verification Traceability Diagram (VTD)
 - Traces
 - System Reqs <<trace>> Functions
 - VEP <<verify>> System Reqs
 - VEP <<satisfy>> Verification Reqs
 - Verification Reqs <<trace>> System Reqs
 - Data Objectives <<derive>> Verification Reqs
 - Verification Cases <<satisfy>> Data Objectives

WHY

Verification Case activity diagrams

Data Analysis Plan activity diagrams

- Activity diagram showing how data will be analyzed to determine verification success of the system

requirements

- VEP View
 - Dashboard (content diagram) identifying VEP, VTD, VPDs
 - 1 per logical group of requirements

- Verification Plan Diagram (VPD)
 - Dashboard (content diagram) identifying
 - Verification Plan
 - Verification Environment
 - Including the System Under Test (SUT)
 - Verification Cases
 - Data Events
 - Verification Resources

HOW to Create the RVAM

HOW to Create the RVAM

- 1. Identify relevant system functions
- 2. Determine logical grouping of system requirements
 - For example: (1) Temperature reqs, (2) Volume reqs, (3) Timing reqs, (4) etc.
- Create summary overview dashboard
- 4. Create VEP View (1 per logical req group)
 - Identifies VEP, Traceability Diagrams, VPDs
- 5. Create the Traceability Diagram
 - Consider creating multiple so that each contains no more than 10 requirements, for readability
- 6. Create the VEP (1 per logical req group)
- 7. Create Verification Case activity diagrams
- 8. Create Data Analysis Plan activity diagrams
- 9. Create Verification Plan Diagram
- In General:
 - Create placeholder diagrams
 - Create lower-level objects, then populate higher-level objects
 - Iterate, especially over the dashboards

Division of Labor

- Systems Engineering
 - System Functions
 - System Requirements
 - System Architecture
 - Top part of VTD
- Integration and Test
 - VerificationRequirements
 - Verification Descriptions,Plans, Procedures
 - Data Objectives and Analysis Plans
 - Bottom part of VTD

