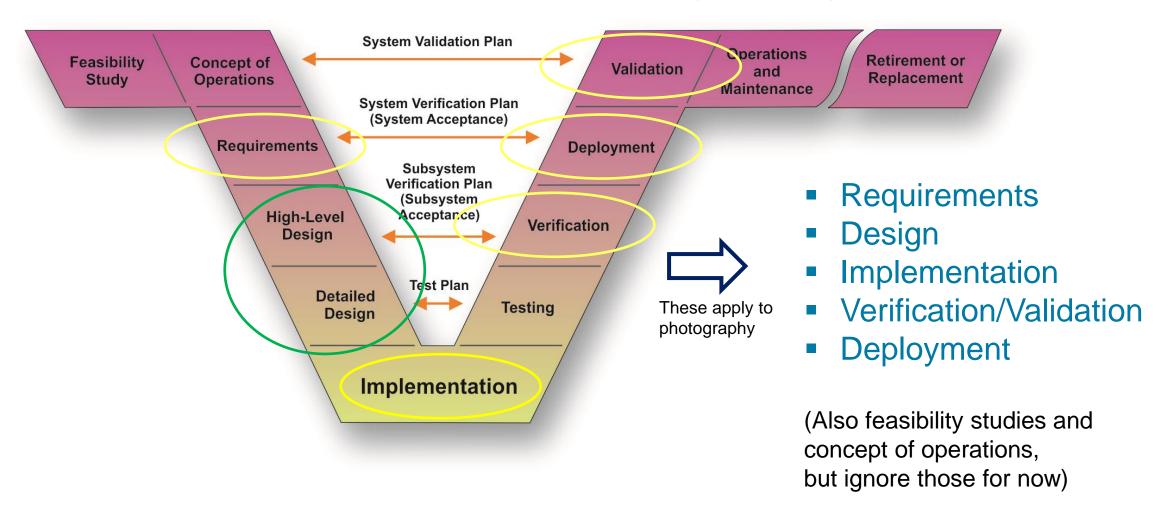


Systems Engineering and Photography? You Bet!

Photography


A combination of artistic vision and technical execution. A form of art, but with a strong technical flair.

Question

Do serious photographers use Systems Engineering in their workflows, their creative processes, their planning & execution phases, etc.?

... Let's take a look!

Traditional Systems Engineering V

There are many TYPES of photography. E.g.,

- landscape
- studio
- event
- wildlife
- sports
- astro
- underwater
- night

- aerial
- portraiture
- family
- pet
- model
- macro
- advertisement
- & many more!

Each type has its **own degree and sort of planning**. Some, such as sports and landscape, are more about *read-and-react* and *discovery*, whereas others, like studio, are about *creating*.

Example: Landscape Photography

Requirements – What does one typically want in a landscape image, and how will this translate to design, required photo gear, and planning?

- Whole scene → wide angle lens
- Good depth of field (everything in focus) → smaller apertures/slower shutter speeds require camera stabilization, e.g., tripod
- Agreeable lighting → time of year and daytime considerations, e.g., golden hour (sunrise/sunset) for warm light in desert, mid-day for foliage, etc.
- Also, Accessibility → ability to reach the shooting area; will this require a permit, an SUV, hiking gear, an airline flight, etc.?

In-Depth Example: (Specialized) Night Shot

Star Swirls

As the Earth rotates, the nighttime stars appear to circle around the North Star.

What equipment, technique, and planning is required to capture such an image?

Fun Note – since it takes 24 hours for a star to fully rotate around the North Star, you can estimate in the photo how long the photographer left open the shutter. Here, I estimate approximately 1 hour.



Photo by Reign Abarintos on Unsplash

Star Swirl REQUIREMENTS

What attributes should such a photo have? What are the equipment and environmental requirements?

Star Swirl - (Typical) Requirements

- A great photo (given)
 - Long swirl
 - Nice, properly lit foreground object
- Camera with ability to lock open its shutter the Bulb (b) setting and trigger
- Camera with enough battery power to remain open for at least several hours (note noise reduction can double that requirement)
- Strong camera stabilization (tripod)
- DARK area and sky! Away from cities, moonless night
- Clear sky (haze obscures light, clouds catch light from nearby cities)
- Non-flight path
- Ideally a non-travelled area (no car headlights, worry about your camera disappearing, etc.)

Star Swirl HIGH LEVEL DESIGN

Where, When, How?

Star Swirl – (Typical) High Level Design

- Foreground: the best star swirl images have interesting foreground subjects, like an aesthetically-pleasing building, etc. (...pure star swirl images can be pretty boring)
- Balancing the foreground and background light: this is important, and can also be a significant challenge!
- Lens focal length: how wide should the scene be? Note that the wider it is, the more chance there is that the scene can be contaminated by unwanted light.
- Exposure time: how long should the exposure be? Winter has longer nights, but the longer the exposure the greater the chance of problems. Battery can go dead (note – best to use a FILM camera with mechanical B setting)
- Access: reaching the shoot location. Is it freely accessible, do you have the right vehicle, hiking/camping gear, etc.?

Star Swirl DETAILED LEVEL DESIGN

Camera and lighting details

Logistics

Star Swirl - (Typical) Detailed Design

- More Foreground must ensure the scene isn't overly bright (it too bright will burn out detail on the image)
- More Balancing foreground/background light decide on, obtain and prepare the supplemental lighting (strobes, flashlight, etc.) If shooting film, bring digital camera to do/see tests.
- All technical considerations decide on ISO, aperture, protection from wind, trigger device (test!), supplemental battery pack(?), etc.
- During-the-shoot considerations keeping warm, protection from critters, camping equipment, chair, food, & keeping an eye on the camera, etc.
- Conditions best time of year to get the shot (temperature, lighting, crowds, etc.)

Star Swirl IMPLEMENATION

Monitoring Weather
Transportation
Performing tests
Doing it

Star Swirl - (Typical) Implementation

- Weather prediction look at long and short-term forecasts. Delay trip if necessary
- Making, using checklist almost a must! Helps avoid forgetting important steps or equipment
- Testing equipment beforehand test before departing
- Flexibility must be prepared to adjust the plan in the field
- Travel reaching the shoot location
- Small field tests will only have one chance to get the real image. Therefore, best to do a few short exposure experiments in the field to verify everything
- **Time to do it right!** time to execute. Avoid operator errors; check and double check all settings. Have fun!

Star Swirl VERIFICATION & VALIDATION

Examining the results

Performing post processing

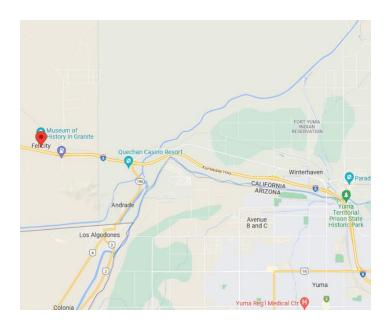
Get feedback

Star Swirl - (Typical) Verification & Validation

After the shoot,

- Inspect results, choose best photo(s)
- Perform post processing ('post') as necessary
- Get feedback, make adjustments

Actual Star Swirl PHOTOSHOOT


Night Swirl - Felicity, California, 2014

Star Swirl – Real World Example

High Level Design

- Foreground subject: interesting church on hill at Felicity, CA, the Museum of History In Granite.
- Location: CA/AZ border. Near Yuma, but far enough away for sufficient darkness.
- Isolated but accessible: mostly isolated, only slightly breaking official visitation hours...
- ✓ Bonus: church façade faces south, so North Star aligns directly behind it.

Star Swirl – Real World Example

Detailed Design

Choice of equipment:

- Mamiya 645 Medium Format film camera with mechanical Bulb (b) setting
- Wired remote trigger with locking capability
- 45mm MF Lens (28mm equivalent)
- Fuji Velvia 100 ISO film (120mm medium format)
- Slik 212 tripod
- Nikon D700 digital camera, for lighting experiments beforehand
- Nikon SB-700 detachable flash, 92 Guide number, for lighting foreground

Other details:

- Flashlight to work at night, avoid rattlesnakes in dark, etc.
- Tape to block the Mamiya's back viewport (to avoid fogging film)
- Alarm clock

Star Swirl – Real World Example

Implementation

Overall details

- Drive: 2.5 hours (~ 165 miles)
- Weather: warm evening (Oct), moonless & mostly clear. Completely dark by 9pm
- Isolation: very few visitors
- Human factors: parked near entrance, slept in back of SUV
- Exposure: ~ 7 hours. Ended exposure at ~ 4:15 am (well before dawn)

Star Swirl – Real World Example

Location

Star Swirl – Real World Example

Subject

(All images should have a subject)

Risk! Church had flood lights that, if powered, would completely burn out the church in the image.

Workaround: None, as there was no way to safely (and legally) disconnect them. Luckily, they did not illuminate.

Star Swirl – Real World Example

Implementation

Implementation Steps

Like a space launch, only one chance to get it right.

- Determine the best camera angle
- Emplace tripod
- Determine **correct amount of foreground lighting**: experiment flashing the façade with strobe and digital camera. Check image to estimate correct exposure
- Replace digital camera on the tripod with film camera. Block rear viewport
- Set correct aperture, manually focus (not super easy in the dark), attach remote trigger
- Lock open shutter on film camera using B setting and locking remote trigger
- Flash the foreground. Slightly underexpose, as ambient starlight will add slightly more exposure overnight

Then hope for the best!

Star Swirl – Real World Example

Foreground Lighting Experiments (using digital camera)


Star Swirl – Real World Example

Verification & Validation

Examining the Captured Image on Film

- Film scanned into a digital image
- Is this an acceptable base image?

Notice the flash head illuminations in the photo. These must be eliminated in post processing.

Star Swirl – Real World Example

Verification & Validation

Post processing:

- Eliminate distractions
- Straighten image
- Adjust colors, density
- Success or Failure? This is where you determine whether you need to do a reshoot

Conclusion

- For serious results, serious photographers think about image requirements, design, and implementation.
- This can be considered to correlate to systems engineering.
- Post processing is now a given. However, similar to engineering,
 photographers try to get things as right as possible from the start (in design and implementation) to minimize post-work.

THANK YOU

